论文标题

$ a_ {2l}^{(2)} $在级别$ -l- \ frac {1} {2} $

$A_{2l}^{(2)}$ at level $-l-\frac{1}{2}$

论文作者

Kanade, Shashank

论文摘要

令$ l_ {l} = l(\ mathfrak {sl} _ {2l+1}, - l- \ frac {1} {2} {2})$是基于offine lie algebra lie代数$ \ wideHat { $ -L- \ frac {1} {2} $。我们考虑了$ a_ {2l} = \ mathfrak {sl} _ {2l+1} $的dynkin图的相关的升力$ν$。 $ν$ -Twisted $ l_l $ -Modules是$ a_ {2l}^{(2)} $ - 级别$ -l- \ frac {1} {1} {2} $的模块,并具有反同质性实现。我们使用扭曲的Zhu代数和奇异向量对简单的$ν$ -TWIST进行了最高权重(弱)$ l_l $ - 模块,用于$ \ wideHat {\ Mathfrak {\ Mathfrak {sl}} _ {2l+1} $ at Level $ -l- \ frac {2l+1} $ at Level $ -l- \ frac {1} $ per per per per per per per per。我们发现,有一个有限的模块,直到同构,而$ν$ -twisted(feal)$ l_l $ -modules in类别$ \ mathscr {o} $ for $ a_ {2l}^{2l}^{(2)} $是半含量的。

Let $L_{l}=L(\mathfrak{sl}_{2l+1},-l-\frac{1}{2})$ be the simple vertex operator algebra based on the affine Lie algebra $\widehat{\mathfrak{sl}}_{2l+1}$ at boundary admissible level $-l-\frac{1}{2}$. We consider a lift $ν$ of the Dynkin diagram involution of $A_{2l}=\mathfrak{sl}_{2l+1}$ to an involution of $L_{l}$. The $ν$-twisted $L_l$-modules are $A_{2l}^{(2)}$-modules of level $-l-\frac{1}{2}$ with an anti-homogeneous realization. We classify simple $ν$-twisted highest-weight (weak) $L_l$-modules using twisted Zhu algebras and singular vectors for $\widehat{\mathfrak{sl}}_{2l+1}$ at level $-l-\frac{1}{2}$ obtained by Perše. We find that there are finitely many such modules up to isomorphism, and the $ν$-twisted (weak) $L_l$-modules that are in category $\mathscr{O}$ for $A_{2l}^{(2)}$ are semi-simple.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源