论文标题
利用视觉注意提示进行车辆检测和跟踪
Utilising Visual Attention Cues for Vehicle Detection and Tracking
论文作者
论文摘要
先进的驾驶员辅助系统(ADA)吸引了许多研究人员的关注。基于视觉的传感器是在驾驶时模仿人类驾驶员视觉行为的最接近的方法。在本文中,我们探讨了使用视觉关注(显着性)进行对象检测和跟踪的可能方法。我们研究:1)视觉注意图(例如\ emph {主题}注意力图或显着性图和\ emph {objectness}的注意图如何促进2阶段对象检测器中的区域提案的生成; 2)如何将视觉注意图用于跟踪多个对象。我们提出了一个神经网络,可以同时检测对象为并生成对象和主题图以节省计算能力。我们使用顺序的蒙特卡洛概率假设密度(PHD)滤波器在跟踪过程中进一步利用视觉注意图。实验是在Kitti和Detrac数据集上进行的。视觉关注和分层功能的使用显示了对象检测的$ \ $ 8 \%的可观改善,在Kitti DataSet上有效地将跟踪性能提高了$ \ $ 4 \%。
Advanced Driver-Assistance Systems (ADAS) have been attracting attention from many researchers. Vision-based sensors are the closest way to emulate human driver visual behavior while driving. In this paper, we explore possible ways to use visual attention (saliency) for object detection and tracking. We investigate: 1) How a visual attention map such as a \emph{subjectness} attention or saliency map and an \emph{objectness} attention map can facilitate region proposal generation in a 2-stage object detector; 2) How a visual attention map can be used for tracking multiple objects. We propose a neural network that can simultaneously detect objects as and generate objectness and subjectness maps to save computational power. We further exploit the visual attention map during tracking using a sequential Monte Carlo probability hypothesis density (PHD) filter. The experiments are conducted on KITTI and DETRAC datasets. The use of visual attention and hierarchical features has shown a considerable improvement of $\approx$8\% in object detection which effectively increased tracking performance by $\approx$4\% on KITTI dataset.