论文标题
Tweepfake:关于检测DeepFake推文
TweepFake: about Detecting Deepfake Tweets
论文作者
论文摘要
语言建模的最新进展显着改善了深神经模型的生成能力:2019年OpenAI释放了GPT-2,这是一种预先训练的语言模型,可以自主生成连贯的,非平底和类似人类的文本样本。从那时起,已经开发了更强大的文本生成模型。对手可以利用这些巨大的生成能力来增强社交机器人,这些社交机器人将有能力写出合理的深击信息,希望污染公众的辩论。为了防止这种情况,开发DeepFake社交媒体消息检测系统至关重要。但是,据我们所知,从未有人解决过在Twitter或Facebook等社交网络上发现机器生成的文本的检测。为了帮助该检测领域的研究,我们收集了\ Real DeepFake Tweets Tweepfake的第一个数据集。从某种意义上说,每个DeepFake Tweet实际上都发布在Twitter上是真实的。我们从总共23个机器人中收集了推文,模仿了17个人类帐户。机器人基于各种一代技术,即马尔可夫链,RNN,RNN+Markov,LSTM,GPT-2。我们还随机从机器人模仿的人类中随机选择了一条推文,以具有25,572条推文的总体平衡数据集(一半人类和半机器人生成)。该数据集可在Kaggle上公开可用。最后,我们评估了13种DeepFake文本检测方法(基于各种最先进的方法),以证明Tweepfake所构成的挑战并创建了稳固的检测技术基线。我们希望TweepFake也可以提供机会解决社交媒体信息的DeepFake检测。
The recent advances in language modeling significantly improved the generative capabilities of deep neural models: in 2019 OpenAI released GPT-2, a pre-trained language model that can autonomously generate coherent, non-trivial and human-like text samples. Since then, ever more powerful text generative models have been developed. Adversaries can exploit these tremendous generative capabilities to enhance social bots that will have the ability to write plausible deepfake messages, hoping to contaminate public debate. To prevent this, it is crucial to develop deepfake social media messages detection systems. However, to the best of our knowledge no one has ever addressed the detection of machine-generated texts on social networks like Twitter or Facebook. With the aim of helping the research in this detection field, we collected the first dataset of \real deepfake tweets, TweepFake. It is real in the sense that each deepfake tweet was actually posted on Twitter. We collected tweets from a total of 23 bots, imitating 17 human accounts. The bots are based on various generation techniques, i.e., Markov Chains, RNN, RNN+Markov, LSTM, GPT-2. We also randomly selected tweets from the humans imitated by the bots to have an overall balanced dataset of 25,572 tweets (half human and half bots generated). The dataset is publicly available on Kaggle. Lastly, we evaluated 13 deepfake text detection methods (based on various state-of-the-art approaches) to both demonstrate the challenges that Tweepfake poses and create a solid baseline of detection techniques. We hope that TweepFake can offer the opportunity to tackle the deepfake detection on social media messages as well.