论文标题

从连续测量中推断出有限的多维信号

Extrapolation of Bandlimited Multidimensional Signals from Continuous Measurements

论文作者

Frankenbach, Cornelius, Martínez-Nuevo, Pablo, Møller, Martin, Kellermann, Walter

论文摘要

常规的采样和插值通常取决于离散测量。在本文中,我们开发了一个理论框架,用于在较高的维度中推断信号从有限的高维区域的连续波形知识中推断出来。特别是,我们提出了一种迭代方法,以基于原始信号的截短版本对有限区域的截短版本重建带限制的多维信号 - 此处称为连续测量。在提出的方法中,重建是通过在区域限制和限制操作的凸组合中迭代进行的。我们表明,这种迭代由一个坚定的非专业操作员组成,并且证明了多维带限制信号的强大融合。为了提高数值稳定性,我们引入了正则化迭代,并显示了其与Tikhonov正则化的联系。该方法用于二维信号的数值说明。

Conventional sampling and interpolation commonly rely on discrete measurements. In this paper, we develop a theoretical framework for extrapolation of signals in higher dimensions from knowledge of the continuous waveform on bounded high-dimensional regions. In particular, we propose an iterative method to reconstruct bandlimited multidimensional signals based on truncated versions of the original signal to bounded regions---herein referred to as continuous measurements. In the proposed method, the reconstruction is performed by iterating on a convex combination of region-limiting and bandlimiting operations. We show that this iteration consists of a firmly nonexpansive operator and prove strong convergence for multidimensional bandlimited signals. In order to improve numerical stability, we introduce a regularized iteration and show its connection to Tikhonov regularization. The method is illustrated numerically for two-dimensional signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源