论文标题
具有1D对称保护拓扑顺序的字符串顺序参数的量子计算优势
Quantum computational advantage with string order parameters of 1D symmetry-protected topological order
论文作者
论文摘要
具有有利量子策略的非本地游戏可以说是量子资源对其经典对应物的力量的最基本演示。最近,非本地游戏的某些多人游戏概括被用来证明浅深度电路的小型计算复杂性类别之间的无条件分离。在这里,我们展示了这些非局部游戏的有利策略,用于一维对称性保护拓扑订单(SPTOS)的通用接地状态,当时被称为扭曲阶段的SPTO的离散不变是非平凡而-1时。我们的构造表明,此类SPTO的足够大的弦阶参数表明全局约束相关性可用于无条件的计算分离。
Nonlocal games with advantageous quantum strategies give arguably the most fundamental demonstration of the power of quantum resources over their classical counterparts. Recently, certain multiplayer generalizations of nonlocal games have been used to prove unconditional separations between small computational complexity classes of shallow-depth circuits. Here, we show advantageous strategies for these nonlocal games for generic ground states of one-dimensional symmetry-protected topological orders (SPTOs), when a discrete invariant of a SPTO known as a twist phase is nontrivial and -1. Our construction demonstrates that sufficiently large string order parameters of such SPTOs are indicative of globally constrained correlations useful for the unconditional computational separation.