论文标题

寒冷:迈向下一代预制系统

COLD: Towards the Next Generation of Pre-Ranking System

论文作者

Wang, Zhe, Zhao, Liqin, Jiang, Biye, Zhou, Guorui, Zhu, Xiaoqiang, Gai, Kun

论文摘要

多阶段的级联体系结构在许多工业系统(例如推荐系统和在线广告)中存在广泛存在,通常由顺序模块组成,包括匹配,预先排名,排名等。长期以来,考虑到排名的简化版本,这只是该模块的简化版本,考虑到候选人的较大候选设置的排名。因此,主要是为了简化排名模型来处理在线推断的计算能力的爆炸。在本文中,我们从算法系统的共同设计视图中重新考虑了预级系统的挑战。我们没有通过限制模型体系结构来节省计算能力,这会导致模型性能的损失,而是在这里设计了一个新的预级系统,通过联合优化前级别模型和IT成本的计算能力。我们将其命名为冷(计算电源成本吸引力在线和轻巧的深度预级系统)。 Cold Beats Sota分为三倍:(i)具有横截面特征的任意深模型可以在可控计算功率成本的限制下以冷的速度应用。 (ii)通过将优化技巧应用于推理加速度,可以明确降低计算功率成本。这进一步带来了感冒的空间,以应用更复杂的深层模型以达到更好的性能。 (iii)冷模型以在线学习和切断的方式工作,使其能够应对数据分配转移的挑战的出色能力。同时,完全在线的预先预先访问COLD系统为我们提供了灵活的基础架构,该基础架构支持有效的新模型开发和在线A/B测试。根据2019年,Cold已在阿里巴巴展示广告系统中的几乎所有涉及预先层次模块的产品中部署,从而带来了重大改进。

Multi-stage cascade architecture exists widely in many industrial systems such as recommender systems and online advertising, which often consists of sequential modules including matching, pre-ranking, ranking, etc. For a long time, it is believed pre-ranking is just a simplified version of the ranking module, considering the larger size of the candidate set to be ranked. Thus, efforts are made mostly on simplifying ranking model to handle the explosion of computing power for online inference. In this paper, we rethink the challenge of the pre-ranking system from an algorithm-system co-design view. Instead of saving computing power with restriction of model architecture which causes loss of model performance, here we design a new pre-ranking system by joint optimization of both the pre-ranking model and the computing power it costs. We name it COLD (Computing power cost-aware Online and Lightweight Deep pre-ranking system). COLD beats SOTA in three folds: (i) an arbitrary deep model with cross features can be applied in COLD under a constraint of controllable computing power cost. (ii) computing power cost is explicitly reduced by applying optimization tricks for inference acceleration. This further brings space for COLD to apply more complex deep models to reach better performance. (iii) COLD model works in an online learning and severing manner, bringing it excellent ability to handle the challenge of the data distribution shift. Meanwhile, the fully online pre-ranking system of COLD provides us with a flexible infrastructure that supports efficient new model developing and online A/B testing.Since 2019, COLD has been deployed in almost all products involving the pre-ranking module in the display advertising system in Alibaba, bringing significant improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源