论文标题
具有混合吸收反应的一类方程的边界单数解
Boundary singular solutions of a class of equations with mixed absorption-reaction
论文作者
论文摘要
我们研究满足正功能的属性 - $δ$ u + u p -m | $ \ nabla $ u | q = 0是域$ω$或r n +中的p> 1 <q <min {p,2}时。我们将研究集中在(e)在边界上消失的解决方案。该分析取决于R N +中可分离溶液的存在。我们在边界上汇总了具有孤立奇异性的各种类型的阳性溶液。我们还研究了紧凑边界集的可移动性以及与(e)相关的DIRICHLET问题以及与边界数据量度相关的条件。
We study properties of positive functions satisfying (E) --$Δ$u + u p -- M |$\nabla$u| q = 0 is a domain $Ω$ or in R N + when p > 1 and 1 < q < min{p, 2}. We concentrate our research on the solutions of (E) vanishing on the boundary except at one point. This analysis depends on the existence of separable solutions in R N +. We consruct various types of positive solutions with an isolated singularity on the boundary. We also study conditions for the removability of compact boundary sets and the Dirichlet problem associated to (E) with a measure for boundary data.