论文标题
重型离子碰撞中无监督的离群值检测
Unsupervised Outlier Detection in Heavy-Ion Collisions
论文作者
论文摘要
我们提出了不同的无监督学习方法,这些方法可用于高能核冲突中的异常检测。 URQMD模型用于生成事件的批量背景以及不同的异常事件变体,这可能是由于错误识别的中心性或检测器故障而导致的。此处介绍的方法可以推广到不同的新型物理效应。为了检测异常值,实现了尺寸还原算法,特别是原理组件分析(PCA)和自动编码器(AEN)。我们发现,主要的重建误差是区分离群值和背景的好方法。使用ROC曲线比较算法的性能。结果表明,描述单个事件的减少(编码)维度的数量对异常检测任务的性能产生了重大贡献。我们发现,最适合分开异常事件的模型需要在重建事件以及同时具有少量参数时具有良好的性能。
We present different methods of unsupervised learning which can be used for outlier detection in high energy nuclear collisions. The UrQMD model is used to generate the bulk background of events as well as different variants of outlier events which may result from misidentified centrality or detector malfunctions. The methods presented here can be generalized to different and novel physics effects. To detect the outliers, dimensional reduction algorithms are implemented, specifically the Principle Component Analysis (PCA) and Autoencoders (AEN). We find that mainly the reconstruction error is a good measure to distinguish outliers from background. The performance of the algorithms is compared using a ROC curve. It is shown that the number of reduced (encoded) dimensions to describe a single event contributes significantly to the performance of the outlier detection task. We find that the model which is best suited to separate outlier events requires a good performance in reconstructing events and at the same time a small number of parameters.