论文标题

挑战网络中边缘辅助实时对象检测的神经压缩和过滤

Neural Compression and Filtering for Edge-assisted Real-time Object Detection in Challenged Networks

论文作者

Matsubara, Yoshitomo, Levorato, Marco

论文摘要

边缘计算范式将具有计算能力的设备 - 边缘服务器 - 在网络边缘上,以帮助移动设备执行数据分析任务。直观地,将计算算务任务卸载可以减少其执行时间。但是,将移动设备连接到边缘服务器的无线通道的恶劣条件可能会降低边缘卸载实现的总体捕获延迟。在此,我们专注于通过深神经网络(DNN)支持远程对象检测的边缘计算,并开发一个框架以减少无线链接传输的数据量。我们提出的核心想法分别由移动设备和边缘服务器执行的最新方法(即头部和尾部模型)构建。因此,无线链接用于将头模型的最后一层输出传输到边缘服务器,而不是DNN输入。大多数先前的工作都集中在分类任务上,并使DNN结构不变。本文中,我们的重点是用于三个不同对象检测任务的DNN,它们呈现出更加令人费解的结构,并通过在头部模型的早期层中引入瓶颈层来修改网络的架构:(i)实现网络内压缩,以及(II)不包含使用网络关注的对象的预滤波器图片。结果表明,所提出的技术代表了参数区域中局部和边缘计算之间的一个有效的中间选项,在该区域中,这些极端解决方案无法提供令人满意的性能。代码和训练有素的模型可在https://github.com/yoshitomo-matsubara/hhnd-ghnd-bhnd-object-detectors上找到。

The edge computing paradigm places compute-capable devices - edge servers - at the network edge to assist mobile devices in executing data analysis tasks. Intuitively, offloading compute-intense tasks to edge servers can reduce their execution time. However, poor conditions of the wireless channel connecting the mobile devices to the edge servers may degrade the overall capture-to-output delay achieved by edge offloading. Herein, we focus on edge computing supporting remote object detection by means of Deep Neural Networks (DNNs), and develop a framework to reduce the amount of data transmitted over the wireless link. The core idea we propose builds on recent approaches splitting DNNs into sections - namely head and tail models - executed by the mobile device and edge server, respectively. The wireless link, then, is used to transport the output of the last layer of the head model to the edge server, instead of the DNN input. Most prior work focuses on classification tasks and leaves the DNN structure unaltered. Herein, our focus is on DNNs for three different object detection tasks, which present a much more convoluted structure, and modify the architecture of the network to: (i) achieve in-network compression by introducing a bottleneck layer in the early layers on the head model, and (ii) prefilter pictures that do not contain objects of interest using a convolutional neural network. Results show that the proposed technique represents an effective intermediate option between local and edge computing in a parameter region where these extreme point solutions fail to provide satisfactory performance. The code and trained models are available at https://github.com/yoshitomo-matsubara/hnd-ghnd-object-detectors .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源