论文标题

看着身体:心理困扰中身体手势和自适应者的自动分析

Looking At The Body: Automatic Analysis of Body Gestures and Self-Adaptors in Psychological Distress

论文作者

Lin, Weizhe, Orton, Indigo, Li, Qingbiao, Pavarini, Gabriela, Mahmoud, Marwa

论文摘要

心理困扰是社会上一个重大且日益严重的问题。对这种困扰的自动检测,评估和分析是一个积极的研究领域。与诸如面部,头部和人声之类的模式相比,研究对这些任务的使用方式的研究相对稀少。这部分是由于可用的数据集有限的,并且难以自动提取有用的身体功能。姿势估计和深度学习的最新进展使这种新方法和领域的新方法。为了实现这项研究,我们已经收集并分析了一个新的数据集,其中包含完整的视频,以进行简短的访谈和自我报告的遇险标签。我们提出了一种新型方法,可以自动检测自适应者和烦躁,这是一个与心理困扰相关的自适应者的子集。我们对统计身体手势和烦躁的特征进行分析,以探索遇险水平如何影响参与者的行为。然后,我们提出了一种多模式方法,该方法使用多模式深度denoising自动编码器和改进的Fisher Vector编码结合了不同的特征表示。我们证明,我们提出的模型将视听特征与自动检测到的烦躁的行为提示相结合,可以成功预测具有自我报告的焦虑和抑郁水平的数据集中的遇险水平。

Psychological distress is a significant and growing issue in society. Automatic detection, assessment, and analysis of such distress is an active area of research. Compared to modalities such as face, head, and vocal, research investigating the use of the body modality for these tasks is relatively sparse. This is, in part, due to the limited available datasets and difficulty in automatically extracting useful body features. Recent advances in pose estimation and deep learning have enabled new approaches to this modality and domain. To enable this research, we have collected and analyzed a new dataset containing full body videos for short interviews and self-reported distress labels. We propose a novel method to automatically detect self-adaptors and fidgeting, a subset of self-adaptors that has been shown to be correlated with psychological distress. We perform analysis on statistical body gestures and fidgeting features to explore how distress levels affect participants' behaviors. We then propose a multi-modal approach that combines different feature representations using Multi-modal Deep Denoising Auto-Encoders and Improved Fisher Vector Encoding. We demonstrate that our proposed model, combining audio-visual features with automatically detected fidgeting behavioral cues, can successfully predict distress levels in a dataset labeled with self-reported anxiety and depression levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源