论文标题
在差异模块的Rees代数的Cohen-Macaulay属性上
On the Cohen-Macaulay property of the Rees algebra of the module of differentials
论文作者
论文摘要
让$ r $是字段$ k $上的有限类型的代数,让$ω_k(r)$是其超过$ k $的kähler差异模块。如果$ r $是均质的完整交叉点,而$ \ mathrm {char}(k)= 0 $,我们证明$ω_k(r)$每当其REES代数为cohen-macaulay时是线性类型最多两倍的尺寸。
Let $R$ be an algebra essentially of finite type over a field $k$ and let $Ω_k(R)$ be its module of Kähler differentials over $k$. If $R$ is a homogeneous complete intersection and $\mathrm{char}(k)=0$, we prove that $Ω_k(R)$ is of linear type whenever its Rees algebra is Cohen-Macaulay and locally at every homogeneous prime $\mathfrak{p}$ the embedding dimension of $R_{\mathfrak{p}}$ is at most twice its dimension.