论文标题

使用词典学习在海上环境中未识别的浮动物体检测

Unidentified Floating Object detection in maritime environment using dictionary learning

论文作者

Venkatrayappa, Darshan, Desolneux, Agnès, Hubert, Jean-Michel, Manceau, Josselin

论文摘要

由于观察到的场景的复杂性,海事域是对象检测最具挑战性的场景之一。在本文中,我们提出了一种新的方法来检测海上环境中未知的浮动物体。所提出的方法能够检测浮动物体,而无需任何事先了解其视觉外观,形状或位置。通过从k-SVD算法中学到的视觉词典对视频流的输入图像进行了授予。 DeNocer的图像是由自相似内容制成的。稍后,我们提取残留图像,这是原始图像和deNo的(自相似)图像之间的差异。因此,残留图像包含噪声和显着结构(对象)。这些显着结构可以使用A逆转录模型提取。我们通过在展示各种海上场景的视频上测试算法的功能来证明我们的算法的功能。

Maritime domain is one of the most challenging scenarios for object detection due to the complexity of the observed scene. In this article, we present a new approach to detect unidentified floating objects in the maritime environment. The proposed approach is capable of detecting floating objects without any prior knowledge of their visual appearance, shape or location. The input image from the video stream is denoised using a visual dictionary learned from a K-SVD algorithm. The denoised image is made of self-similar content. Later, we extract the residual image, which is the difference between the original image and the denoised (self-similar) image. Thus, the residual image contains noise and salient structures (objects). These salient structures can be extracted using an a contrario model. We demonstrate the capabilities of our algorithm by testing it on videos exhibiting varying maritime scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源