论文标题
对非统一高阶不连续的盖尔金方法的插值技术的比较
A comparison of interpolation techniques for non-conformal high-order discontinuous Galerkin methods
论文作者
论文摘要
在许多领域中,将移动几何特征合并到模型中以进行复杂模拟的能力是一个常见的要求。航空应用中的流体力学(例如,通常具有旋转(例如涡轮机,车轮和风扇叶片)或滑动组件(例如,在压缩机或涡轮级联级联模拟中)。因此,随着这些病例高保真建模的趋势越来越多,特别是结合使用高阶不连续的盖尔金方法的趋势,因此有必要了解静态网格和滑动/旋转部分之间接口的不同数值处理如何影响整体解决方案质量。在本文中,我们比较了处理此非统一界面的两种不同的方法。第一个是所谓的迫击炮方法,其中沿边缘的磁通积分根据非统一网格的定位进行分割。第二个是一种较含有记录的点对点插值方法,其中用于通量评估的内部和外部数量是从位于界面相对侧的元素中插值的。尽管迫击炮方法在其数值属性方面具有显着优势,但由于它保留了DG方法的局部保护特性,但在复杂的3D网格的背景下,它带来了明显的实现困难,该方法可以更容易地处理该方法。在本文中,我们研究了每种方法的数值特性,不仅集中在观察平滑溶液的收敛顺序上,而且还集中于在线性和非线性双曲线问题的层面不足模拟中的执行方式,以告知这些方法在隐式大型大型模拟中的使用。
The capability to incorporate moving geometric features within models for complex simulations is a common requirement in many fields. Fluid mechanics within aeronautical applications, for example, routinely feature rotating (e.g. turbines, wheels and fan blades) or sliding components (e.g. in compressor or turbine cascade simulations). With an increasing trend towards the high-fidelity modelling of these cases, in particular combined with the use of high-order discontinuous Galerkin methods, there is therefore a requirement to understand how different numerical treatments of the interfaces between the static mesh and the sliding/rotating part impact on overall solution quality. In this article, we compare two different approaches to handle this non-conformal interface. The first is the so-called mortar approach, where flux integrals along edges are split according to the positioning of the non-conformal grid. The second is a less-documented point-to-point interpolation method, where the interior and exterior quantities for flux evaluations are interpolated from elements lying on the opposing side of the interface. Although the mortar approach has significant advantages in terms of its numerical properties, in that it preserves the local conservation properties of DG methods, in the context of complex 3D meshes it poses notable implementation difficulties which the point-to-point method handles more readily. In this paper we examine the numerical properties of each method, focusing not only on observing convergence orders for smooth solutions, but also how each method performs in under-resolved simulations of linear and nonlinear hyperbolic problems, to inform the use of these methods in implicit large-eddy simulations.