论文标题

依赖数据的随机森林

Random Forests for dependent data

论文作者

Saha, Arkajyoti, Basu, Sumanta, Datta, Abhirup

论文摘要

随机森林(RF)是估计回归函数的最流行方法之一。基于节点均值和方差的RF算法的局部性质是当误差为i.i.d.时的理想选择。对于依赖错误过程,例如时间序列和空间设置,其中所有节点中的数据都将与之相关,在本地操作会忽略此依赖性。此外,RF将涉及重新采样相关数据,从而违反Bootstrap的原理。从理论上讲,已经为I.I.D.建立了RF的一致性。错误,但对依赖错误的情况知之甚少。 我们提出了RF-GLS,这是一种以相同方式对依赖误差过程的RF的新型扩展,从根本上讲,从根本上讲,从根本上扩展了普通最小二乘(OLS),以延长依赖性的线性模型。该扩展的关键是回归树中局部决策的等效表示为全局OLS优化,然后用GLS损失代替,以创建GLS式回归树。这也协同解决了重采样问题,因为使用GLS损失量用于重新采样不相关的对比度(预先使用的数据),而不是相关的数据。对于空间设置,RF-GL可以与高斯过程相关误差结合使用,以在新位置生成Kriging预测。 RF成为具有身份工作协方差矩阵的RF-GL的特殊情况。 我们在β(绝对定期)混合误差过程中建立了RF-GL的一致性,并表明该一般结果涵盖了重要案例,例如自回归时间序列和空间Matern Gaussian流程。作为副产品,我们还建立了β混合过程的RF的一致性,据我们所知,这是RF不足的第一个结果。 我们从经验上证明了RF-GL对RF的改善,用于依赖性估计和预测。

Random forest (RF) is one of the most popular methods for estimating regression functions. The local nature of the RF algorithm, based on intra-node means and variances, is ideal when errors are i.i.d. For dependent error processes like time series and spatial settings where data in all the nodes will be correlated, operating locally ignores this dependence. Also, RF will involve resampling of correlated data, violating the principles of bootstrap. Theoretically, consistency of RF has been established for i.i.d. errors, but little is known about the case of dependent errors. We propose RF-GLS, a novel extension of RF for dependent error processes in the same way Generalized Least Squares (GLS) fundamentally extends Ordinary Least Squares (OLS) for linear models under dependence. The key to this extension is the equivalent representation of the local decision-making in a regression tree as a global OLS optimization which is then replaced with a GLS loss to create a GLS-style regression tree. This also synergistically addresses the resampling issue, as the use of GLS loss amounts to resampling uncorrelated contrasts (pre-whitened data) instead of the correlated data. For spatial settings, RF-GLS can be used in conjunction with Gaussian Process correlated errors to generate kriging predictions at new locations. RF becomes a special case of RF-GLS with an identity working covariance matrix. We establish consistency of RF-GLS under beta- (absolutely regular) mixing error processes and show that this general result subsumes important cases like autoregressive time series and spatial Matern Gaussian Processes. As a byproduct, we also establish consistency of RF for beta-mixing processes, which to our knowledge, is the first such result for RF under dependence. We empirically demonstrate the improvement achieved by RF-GLS over RF for both estimation and prediction under dependence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源