论文标题
耦合的雷利 - 泰勒 - 凯文 - 霍尔姆尔兹不稳定性的形态和非平衡分析
Morphological and non-equilibrium analysis of coupled Rayleigh-Taylor-Kelvin-Helmholtz instability
论文作者
论文摘要
在本文中,使用多余时间离散时间离散的Boltzmann模型研究了耦合的Rayleigh-Taylor-taylor-taylor-taylor-kelvin-helmholtz不稳定性(RTI,KHI和RTKHI)系统。引入了形态的边界长度和热力学非平衡(TNE)强度,以探测复杂的构型和动力学过程。在模拟中,RTI始终在后期阶段起主要作用,而早期阶段的主要机制取决于浮力和剪切强度的比较。发现,凝结温度场的总边界长度$ l $均可和平均热通量强度$ d_ {3,1} $都可以用来测量浮力与剪切强度的比率,并定量判断RTKHI系统早期的主要机制。具体而言,当Khi(rti)统治时,$ l^{khi}> l^{rti} $($ l^{khi} <l^{rti} $),$ d_ {3,1}}^{khi}^{khi}> d_ d_ {3,1}^{rti} $);当Khi和rti平衡时,$ l^{khi} = l^{rti} $,$ d_ {3,1}^{khi} = d_ {3,1}^{rti} $。第二组发现如下:对于KHI在较早时间占主导地位并且RTI在以后主导的情况下,进化过程可以大致分为两个阶段。在两个阶段的过渡点之前,$ l^{rtkhi} $最初呈指数增加,然后线性增加。因此,线性增加$ l^{rtkhi} $的终点可以用作区分两个阶段的几何标准。 tne数量,热通量强度$ d_ {3,1}^{rtkhi} $,显示出相似的行为。因此,线性增加$ d_ {3,1}^{rtkhi} $的终点可以用作区分两个阶段的物理标准。
In this paper, the coupled Rayleigh-Taylor-Kelvin-Helmholtz instability(RTI, KHI and RTKHI, respectively) system is investigated using a multiple-relaxation-time discrete Boltzmann model. Both the morphological boundary length and thermodynamic nonequilibrium (TNE) strength are introduced to probe the complex configurations and kinetic processes. In the simulations, RTI always plays a major role in the later stage, while the main mechanism in the early stage depends on the comparison of buoyancy and shear strength. It is found that, both the total boundary length $L$ of the condensed temperature field and the mean heat flux strength $D_{3,1}$ can be used to measure the ratio of buoyancy to shear strength, and to quantitatively judge the main mechanism in the early stage of the RTKHI system. Specifically, when KHI (RTI) dominates, $L^{KHI} > L^{RTI}$ ($L^{KHI} < L^{RTI}$), $D_{3,1}^{KHI} > D_{3,1}^{RTI}$ ($D_{3,1}^{KHI} < D_{3,1}^{RTI}$); when KHI and RTI are balanced, $L^{KHI} = L^{RTI}$, $D_{3,1}^{KHI} = D_{3,1}^{RTI}$. A second sets of findings are as below: For the case where the KHI dominates at earlier time and the RTI dominates at later time, the evolution process can be roughly divided into two stages. Before the transition point of the two stages, $L^{RTKHI}$ initially increases exponentially, and then increases linearly. Hence, the ending point of linear increasing $L^{RTKHI}$ can work as a geometric criterion for discriminating the two stages. The TNE quantity, heat flux strength $D_{3,1}^{RTKHI}$, shows similar behavior. Therefore, the ending point of linear increasing $D_{3,1}^{RTKHI}$ can work as a physical criterion for discriminating the two stages.