论文标题
同质色带一致性,布兰奇菲尔德配对和扭曲的亚历山大多项式
Homotopy ribbon concordance, Blanchfield pairings, and twisted Alexander polynomials
论文作者
论文摘要
我们建立了来自Blanchfield表格和左旋型象征签名的同质丝带一致性障碍物。然后,作为扭曲的亚历山大多项式的应用,我们表明,对于每个具有非平凡的亚历山大多项式的结k,存在一个无限的结系列,它们都与K相一致,并且具有与K相同的Blanchfield形式,因此,该家族中没有一对的结是同质的。
We establish homotopy ribbon concordance obstructions coming from the Blanchfield form and Levine-Tristram signatures. Then, as an application of twisted Alexander polynomials, we show that for every knot K with nontrivial Alexander polynomial, there exists an infinite family of knots that are all concordant to K and have the same Blanchfield form as K, such that no pair of knots in that family is homotopy ribbon concordant.