论文标题

标识具有数字输入程序的程序的故障区域

Identification of Failure Regions for Programs with Numeric Inputs

论文作者

Huang, Rubing, Sun, Weifeng, Chen, Tsong Yueh, Ng, Sebastian, Chen, Jinfu

论文摘要

失败区域居住的失败区域提供了许多见解,以增强许多测试方法的测试有效性。故障区域还可以提供一些重要信息,以支持其他过程,例如软件调试。当测试方法检测到软件故障(表明识别引起故障的输入)时,下一个重要的问题是关于如何基于该导致失败输入(即识别失败区域(IFR))识别故障区域(IFR)。在本文中,我们引入了一种新的IFR策略,即搜索边界(SB),以确定数字输入域的近似故障区域。 SB尝试识别尽可能接近故障区域边界的其他引起故障的输入。为了支持SB,我们提供了一个基本过程,然后提出了两种方法,即针对边界(FSB)的固定取向搜索和边界(DSB)的不同方向搜索。此外,我们实施了一个自动实验平台来集成这些方法。在实验中,我们使用一系列模拟研究和经验研究评估了所提出的SB方法。结果表明,我们的方法可以在有限的测试资源中有效地识别故障区域。

Failure region, where failure-causing inputs reside, has provided many insights to enhance testing effectiveness of many testing methods. Failure region may also provide some important information to support other processes such as software debugging. When a testing method detects a software failure, indicating that a failure-causing input is identified, the next important question is about how to identify the failure region based on this failure-causing input, i.e., Identification of Failure Regions (IFR). In this paper, we introduce a new IFR strategy, namely Search for Boundary (SB), to identify an approximate failure region of a numeric input domain. SB attempts to identify additional failure-causing inputs that are as close to the boundary of the failure region as possible. To support SB, we provide a basic procedure, and then propose two methods, namely Fixed-orientation Search for Boundary (FSB) and Diverse-orientation Search for Boundary (DSB). In addition, we implemented an automated experimentation platform to integrate these methods. In the experiments, we evaluated the proposed SB methods using a series of simulation studies andempirical studies with different types of failure regions. The results show that our methods can effectively identify a failure region, within the limited testing resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源