论文标题
从纯编织组到双曲线组
From pure braid groups to hyperbolic groups
论文作者
论文摘要
在本说明中,我们表明,从纯表面编织组到无扭转双曲线组的任何同态都具有环状图像或通过健忘图的因素。这扩展并提供了作者早期结果的新证明,该结果仅在目标是自由组或表面组时起作用。对于磁盘的纯编织组,我们还证明了类似的刚性结果。
In this note we show that any homomorphism from a pure surface braid group to a torsion-free hyperbolic group either has a cyclic image or factors through a forgetful map. This extends and gives a new proof of an earlier result of the author which works only when the target is a free group or a surface group. We also prove a similar rigidity result for the pure braid group of the disk.