论文标题

具有乘法噪声和不可靠的上行链路通道的多个系统的最佳本地和遥控器

Optimal Local and Remote Controls of Multiple Systems with Multiplicative Noises and Unreliable Uplink Channels

论文作者

Qi, Qingyuan, Xie, Lihua, Zhang, Huanshui

论文摘要

在本文中,研究了一个由多个子系统组成的网络控制系统(NCS)的最佳本地和远程线性二次控制问题(LQ)控制问题,每个子系统都由一个带有一个本地控制器和一个遥控器的一般乘法噪声随机系统描述。由于不可靠的上行链路通道,遥控器只能访问所有子系统的不可靠状态信息,而从遥控器到本地控制器的下行链路频道非常完美。 LQ控制问题的困难是由本地控制器和遥控器的不同信息结构引起的。通过开发Pontyagin的最大原理,得出了必要和足够的可溶性条件,这些条件基于对一组向前和向后差方程(G-FBSDES)的解决方案。此外,通过提出一种将G-FBSDE的新方法解除并引入新的耦合Riccati方程(CRES),得出了最佳控制策略,我们可以在其中验证分离原理是否适用于带有数据包下拉列表的多重噪声NCS。本文可以看作是对不对称信息结构的最佳控制问题的重要贡献。

In this paper, the optimal local and remote linear quadratic (LQ) control problem is studied for a networked control system (NCS) which consists of multiple subsystems and each of which is described by a general multiplicative noise stochastic system with one local controller and one remote controller. Due to the unreliable uplink channels, the remote controller can only access unreliable state information of all subsystems, while the downlink channels from the remote controller to the local controllers are perfect. The difficulties of the LQ control problem for such a system arise from the different information structures of the local controllers and the remote controller. By developing the Pontyagin maximum principle, the necessary and sufficient solvability conditions are derived, which are based on the solution to a group of forward and backward difference equations (G-FBSDEs). Furthermore, by proposing a new method to decouple the G-FBSDEs and introducing new coupled Riccati equations (CREs), the optimal control strategies are derived where we verify that the separation principle holds for the multiplicative noise NCSs with packet dropouts. This paper can be seen as an important contribution to the optimal control problem with asymmetric information structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源