论文标题

内部变异方程的较高规律性和唯一性

Higher regularity and uniqueness for inner variational equations

论文作者

Martin, Gaven, Yao, Cong

论文摘要

我们研究$ p $ - 符合能量功能的本地最小值,\ [\ mathsf {e} _ {\ cal a}^\ ast(h):= \ int_ \ id {\ cal a}(\ cal a}(\ ik(w,h)) dw,\ Quad H | _ \ is = h_0 | _ \ is,\]为自映射$ h:\ id \ to \ id $定义,具有有限的单位磁盘的有限失真,带有规定的边界值$ h_0 $。这里$ \ ik(w,h)= \ frac {\ | dh(w)\ |^2} {j(w,w,h)} $是点的变形函数,$ {\ cal a}:[1,\ infty)\ to [1,\ infty)$ convex and convex and convex and convex and p p p $ can}( $ p \ geq 1 $,具有其他较小的技术条件。注意$ {\ cal a}(t)= t $是Dirichlet Energy功能。 $ \ Mathsf {e} _ {\ cal a}^\ ast $的关键点满足ahlfors-hopf inner-variational方程\ [{\ cal a}'(\ ik(w,w,h))h_w \ edline { Iwaniec,Kovalev和Onninen确立了Lipschitz的临界点。在这里,我们提供足够的条件,以确保局部最小值是该方程式的差异解决方案,并且它是唯一的。任何本地列出的临界点都必须满足此条件,并且基本上是l^1(\ id)\ cap l^r_ {loc}(\ id)的假设$ \ ik(w,h)\对于某些$ r> 1 $。

We study local minima of the $p$-conformal energy functionals, \[ \mathsf{E}_{\cal A}^\ast(h):=\int_\ID {\cal A}(\IK(w,h)) \;J(w,h) \; dw,\quad h|_\IS=h_0|_\IS, \] defined for self mappings $h:\ID\to\ID$ with finite distortion of the unit disk with prescribed boundary values $h_0$. Here $\IK(w,h) = \frac{\|Dh(w)\|^2}{J(w,h)} $ is the pointwise distortion functional, and ${\cal A}:[1,\infty)\to [1,\infty)$ is convex and increasing with ${\cal A}(t)\approx t^p$ for some $p\geq 1$, with additional minor technical conditions. Note ${\cal A}(t)=t$ is the Dirichlet energy functional. Critical points of $\mathsf{E}_{\cal A}^\ast$ satisfy the Ahlfors-Hopf inner-variational equation \[ {\cal A}'(\IK(w,h)) h_w \overline{h_\wbar} = Φ\] where $Φ$ is a holomorphic function. Iwaniec, Kovalev and Onninen established the Lipschitz regularity of critical points. Here we give a sufficient condition to ensure that a local minimum is a diffeomorphic solution to this equation, and that it is unique. This condition is necessarily satisfied by any locally quasiconformal critical point, and is basically the assumption $\IK(w,h)\in L^1(\ID)\cap L^r_{loc}(\ID)$ for some $r>1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源