论文标题

使用SAT计算最佳决策集

Computing Optimal Decision Sets with SAT

论文作者

Yu, Jinqiang, Ignatiev, Alexey, Stuckey, Peter J., Bodic, Pierre Le

论文摘要

随着机器学习越来越多地用于做出决策,因此要求这些决定可以解释。可以说,最容易解释的机器学习模型使用决策规则。本文着重于决策集,这是一种具有无序规则的模型,该模型用单个规则解释了每个预测。为了容易让人类理解,这些规则必须简洁。早期生成最佳决策设置的工作首先最小化规则的数量,然后最大程度地减少文字数量,但最终的规则通常很大。在这里,我们考虑了一个更好的措施,即从文字方面的决策总规模。因此,我们没有遵守需要大量文字的一小部分规则。我们提供了第一种方法来确定达到最低经验风险的最小尺寸决策集,然后研究稀疏的替代方案,即我们以尺寸交易精度。通过找到最佳解决方案,我们表明我们可以构建决策集分类器几乎与最佳启发式方法一样准确,但更简洁,因此可以解释。

As machine learning is increasingly used to help make decisions, there is a demand for these decisions to be explainable. Arguably, the most explainable machine learning models use decision rules. This paper focuses on decision sets, a type of model with unordered rules, which explains each prediction with a single rule. In order to be easy for humans to understand, these rules must be concise. Earlier work on generating optimal decision sets first minimizes the number of rules, and then minimizes the number of literals, but the resulting rules can often be very large. Here we consider a better measure, namely the total size of the decision set in terms of literals. So we are not driven to a small set of rules which require a large number of literals. We provide the first approach to determine minimum-size decision sets that achieve minimum empirical risk and then investigate sparse alternatives where we trade accuracy for size. By finding optimal solutions we show we can build decision set classifiers that are almost as accurate as the best heuristic methods, but far more concise, and hence more explainable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源