论文标题
大规模偏置校正后的亚毫米度星系放大偏置的宇宙学约束
Cosmological constraints with the sub-millimetre galaxies Magnification Bias after large scale bias corrections
论文作者
论文摘要
最近,通过对互相关函数的分析,通过前景星系在高红移亚毫米度星系上产生的放大偏置的研究被证明是作为宇宙学探针的弱透明剪切剪切的一种有趣的独立替代方案。在拟议的可观察情况下,大多数宇宙学约束主要取决于最大的角度分离测量。因此,我们旨在研究和纠正影响前景和背景星系样品的主要大规模偏见,以产生对互相关函数的强大估计。然后,我们分析了校正的信号,以得出更新的宇宙学约束,测量了使用H-ATLAS星系的背景样本,具有光度计红移> 1.2和两个不同的前景样本(使用光谱式的GAMAXIES带有光谱的GARAXIES或SDSSS SDSS SDSS <2 <2 <2 <202的范围0.2 <2。这些测量结果是使用传统的Halo模型描述建模的,该描述既取决于Halo职业分布和宇宙学参数。然后,我们通过在多种情况下执行马尔可夫链蒙特卡洛来估算这些参数,以研究可观察到的性能以及如何改善其结果。在大规模偏差校正之后,我们仅在先前的放大偏见结果方面获得了较小的改进,主要确认了他们的结论:$ω_m> 0.22 $ at $ 95 \%\%$ c.l.的下限。和上限$σ_8<0.97 $ at $ 95 \%$ c.l. ($ z_ {spec} $示例的结果)。但是,通过将两个前景样本组合为简化的层析成像分析,我们能够在$ω_m$ - $ - $σ_8$平面上获得有趣的约束,如下所示:$ω_m= 0.50 _ { - 0.20}^{+ 0.14} $和$σ_8= 0.75 = 0.75 = 0.75 _ {-0.10 _ {-0.10}^68} $ an。
The study of the magnification bias produced on high-redshift sub-millimetre galaxies by foreground galaxies through the analysis of the cross-correlation function was recently demonstrated as an interesting independent alternative to the weak-lensing shear as a cosmological probe. In the case of the proposed observable, most of the cosmological constraints mainly depend on the largest angular separation measurements. Therefore, we aim to study and correct the main large-scale biases that affect foreground and background galaxy samples to produce a robust estimation of the cross-correlation function. Then we analyse the corrected signal to derive updated cosmological constraintsWe measured the large-scale, bias-corrected cross-correlation functions using a background sample of H-ATLAS galaxies with photometric redshifts > 1.2 and two different foreground samples (GAMA galaxies with spectroscopic redshifts or SDSS galaxies with photometric ones, both in the range 0.2 < z < 0.8). These measurements are modelled using the traditional halo model description that depends on both halo occupation distribution and cosmological parameters. We then estimated these parameters by performing a Markov chain Monte Carlo under multiple scenarios to study the performance of this observable and how to improve its results. After the large-scale bias corrections, we obtain only minor improvements with respect to the previous magnification bias results, mainly confirming their conclusions: a lower bound on $Ω_m > 0.22$ at $95\%$ C.L. and an upper bound $σ_8 < 0.97$ at $95\%$ C.L. (results from the $z_{spec}$ sample). However, by combining both foreground samples into a simplified tomographic analysis, we were able to obtain interesting constraints on the $Ω_m$-$σ_8$ plane as follows: $Ω_m= 0.50_{- 0.20}^{+ 0.14}$ and $σ_8= 0.75_{- 0.10}^{+ 0.07}$ at 68\% CL.