论文标题

两公司,三人的人群:持续数量的代理商共识达成共识

Two's Company, Three's a Crowd: Consensus-Halving for a Constant Number of Agents

论文作者

Deligkas, Argyrios, Filos-Ratsikas, Aris, Hollender, Alexandros

论文摘要

我们考虑$ \ varepsilon $ -consensus-halaving问题,其中一组异质的代理旨在将连续资源分为两个(不一定是连续的)部分,所有这些部分同时认为它们的值大致相同(最高$ \ varepsilon $)。最近,该问题已显示为PPA完整,即使是非常简单的估值功能,也以$ n $ $ n $削减的方式进行了PPA票务。为了了解问题的复杂性的根源,我们考虑了只有恒定代理数量的设置,并且我们考虑了问题的计算复杂性和查询复杂性。 对于具有单调估值功能的药物,我们显示了二分法:对于两个药物,问题是多项式时间可溶可溶剂,而对于三个或多个代理,它变为ppa complete。同样,我们表明,对于两种单调剂,可以通过多项式查询解决问题,而对于三个或多个代理,我们提供了指数的查询复杂性下限。这些结果是通过与单调borsuk-ulam问题的有趣联系来启用的,这可能引起独立的兴趣。对于具有一般估值的代理商,我们表明问题是PPA算法,即使对于两个代理,也可以接受指数的查询复杂性下限。

We consider the $\varepsilon$-Consensus-Halving problem, in which a set of heterogeneous agents aim at dividing a continuous resource into two (not necessarily contiguous) portions that all of them simultaneously consider to be of approximately the same value (up to $\varepsilon$). This problem was recently shown to be PPA-complete, for $n$ agents and $n$ cuts, even for very simple valuation functions. In a quest to understand the root of the complexity of the problem, we consider the setting where there is only a constant number of agents, and we consider both the computational complexity and the query complexity of the problem. For agents with monotone valuation functions, we show a dichotomy: for two agents the problem is polynomial-time solvable, whereas for three or more agents it becomes PPA-complete. Similarly, we show that for two monotone agents the problem can be solved with polynomially-many queries, whereas for three or more agents, we provide exponential query complexity lower bounds. These results are enabled via an interesting connection to a monotone Borsuk-Ulam problem, which may be of independent interest. For agents with general valuations, we show that the problem is PPA-complete and admits exponential query complexity lower bounds, even for two agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源