论文标题

用于分割超高分辨率图像的FOVEATION

Foveation for Segmentation of Ultra-High Resolution Images

论文作者

Jin, Chen, Tanno, Ryutaro, Xu, Moucheng, Mertzanidou, Thomy, Alexander, Daniel C.

论文摘要

超高分辨率图像的分割由于其巨大的尺寸,包括数百万甚至数十亿像素,因此具有挑战性。典型的解决方案包括将输入图像分为固定尺寸和/或下采样的补丁以满足内存约束。此类操作会在视野(FOV)(即空间覆盖范围和图像分辨率)中产生信息损失。但是,对细分性能的影响尚未研究。在这项工作中,我们从一个动机实验开始,该实验表明,FOV和分辨率之间的权衡会影响超高分辨率图像上的分割性能 - - 此外,其影响也根据不同领域的局部模式在空间上变化。然后,我们介绍了FoveAtion模块,这是一种可学习的“数据加载器”,对于给定的超高分辨率图像,它可以自适应地选择输入补丁的适当配置(FOV/分辨率权衡),以将图像每个空间位置的下游细分模型馈送到下游细分模型。 FoveAtion模块与分割网络共同训练,以最大程度地提高任务性能。我们在三个公开可用的高分辨率图像数据集上证明了FoveAtion模块在用固定的FOV/分辨率折衷培训的案例中始终提高细分性能。我们的方法在DeepGlobe航空图像数据集上实现了SOTA性能。在GLEASON2019组织病理学数据集上,我们的模型在两个最重要的和模棱两可的课程(Gleason 3和4级)的分段准确性(Gleason 3和4)中比最高表现的挑战者提高了13.1%和7.5%,并提高了6个人类专家的平均表现,提高了6.5%和7.5%。我们的代码和训练有素的模型可在$ \ text {https://github.com/lxasqjc/foveation-sementation} $上获得。

Segmentation of ultra-high resolution images is challenging because of their enormous size, consisting of millions or even billions of pixels. Typical solutions include dividing input images into patches of fixed size and/or down-sampling to meet memory constraints. Such operations incur information loss in the field-of-view (FoV) i.e., spatial coverage and the image resolution. The impact on segmentation performance is, however, as yet understudied. In this work, we start with a motivational experiment which demonstrates that the trade-off between FoV and resolution affects the segmentation performance on ultra-high resolution images---and furthermore, its influence also varies spatially according to the local patterns in different areas. We then introduce foveation module, a learnable "dataloader" which, for a given ultra-high resolution image, adaptively chooses the appropriate configuration (FoV/resolution trade-off) of the input patch to feed to the downstream segmentation model at each spatial location of the image. The foveation module is jointly trained with the segmentation network to maximise the task performance. We demonstrate on three publicly available high-resolution image datasets that the foveation module consistently improves segmentation performance over the cases trained with patches of fixed FoV/resolution trade-off. Our approach achieves the SoTA performance on the DeepGlobe aerial image dataset. On the Gleason2019 histopathology dataset, our model achieves better segmentation accuracy for the two most clinically important and ambiguous classes (Gleason Grade 3 and 4) than the top performers in the challenge by 13.1% and 7.5%, and improves on the average performance of 6 human experts by 6.5% and 7.5%. Our code and trained models are available at $\text{https://github.com/lxasqjc/Foveation-Segmentation}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源