论文标题

一种定向高斯平滑优化方法,用于纳米光子学中的计算逆设计

A directional Gaussian smoothing optimization method for computational inverse design in nanophotonics

论文作者

Zhang, Jiaxin, Bi, Sirui, Zhang, Guannan

论文摘要

基于局部毕业的优化方法缺乏从非凸面景观中逃脱本地最小值所需的非本地探索能力。作者最近提出了定向高斯平滑(DGS)方法(Zhang等,2020),并用于定义真正的非局部梯度,称为DGS梯度,以便在高维黑盒优化的高维黑盒中实现非局部探索。有希望的结果表明,用非本地DGS梯度代替传统的局部梯度可以显着提高基于梯度的方法在优化高度多模式损耗函数方面的性能。但是,当前的DGS方法是针对无界和无约束的优化问题而设计的,这使得它不适用于现实世界工程设计优化问题,在这些问题中,调谐参数通常是有限的,并且损耗函数通常受到物理过程的约束。在这项工作中,我们建议将DGS方法扩展到约束的逆设计框架,以找到更好的设计。所提出的框架在可移植性和灵活性方面具有自然结合参数化,物理模拟和客观配方的优势,以建立有效的倒数设计工作流程。开发了一系列用于平滑半径和学习率更新的自适应策略,以提高计算效率和鲁棒性。为了实现清晰的二进制设计,对参数化的投影强度施加了动态生长机制。设计纳米级波长反复列器的示例证明了我们的方法论,并且与最新方法相比,表现出较高的性能。通过合并体积限制,优化的设计达到了同等的高性能,但大大减少了材料使用量。

Local-gradient-based optimization approaches lack nonlocal exploration ability required for escaping from local minima in non-convex landscapes. A directional Gaussian smoothing (DGS) approach was recently proposed by the authors (Zhang et al., 2020) and used to define a truly nonlocal gradient, referred to as the DGS gradient, in order to enable nonlocal exploration in high-dimensional black-box optimization. Promising results show that replacing the traditional local gradient with the nonlocal DGS gradient can significantly improve the performance of gradient-based methods in optimizing highly multi-modal loss functions. However, the current DGS method is designed for unbounded and unconstrained optimization problems, making it inapplicable to real-world engineering design optimization problems where the tuning parameters are often bounded and the loss function is usually constrained by physical processes. In this work, we propose to extend the DGS approach to the constrained inverse design framework in order to find a better design. The proposed framework has its advantages in portability and flexibility to naturally incorporate the parameterization, physics simulation, and objective formulation together to build up an effective inverse design workflow. A series of adaptive strategies for smoothing radius and learning rate updating are developed to improve the computational efficiency and robustness. To enable a clear binarized design, a dynamic growth mechanism is imposed on the projection strength in parameterization. Our methodology is demonstrated by an example of designing a nanoscale wavelength demultiplexer and shows superior performance compared to the state-of-the-art approaches. By incorporating volume constraints, the optimized design achieves an equivalently high performance but significantly reduces the amount of material usage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源