论文标题
与非逆转相互作用的2D等离子体晶体的屈曲
Buckling of 2D Plasma Crystals with Non-reciprocal Interactions
论文作者
论文摘要
2D等离子体晶体的实验室实现通常涉及单分散的微粒,限于射频(RF)等离子体鞘的水平单层。这引起了所谓的等离子体在微粒下方醒来。唤醒的存在使此类系统中的相互作用在非重生中的相互作用,这一事实可能导致与相互对应物的期望的行为截然不同。在这里,我们检查了六边形2D等离子体晶体的屈曲,随着限制强度的降低而发生,通过良好的点粒子唤醒模型明确考虑了系统的非股展。我们观察到,对于有限的唤醒电荷,单层六边形晶体首先经历过渡到双层六边形结构,在谐波限制的互惠Yukawa系统中,不可证实,随后是双层平方的结构。通过实验相关参数的分子动力学模拟,我们的理论结果证实了我们的理论结果,这表明它们在使用2D复杂等离子体的最新实验中观察到了它们的潜力。
Laboratory realizations of 2D plasma crystals typically involve monodisperse microparticles confined into horizontal monolayers in radio-frequency (rf) plasma sheaths. This gives rise to the so-called plasma wakes beneath the microparticles. The presence of wakes renders the interactions in such systems non-reciprocal, a fact that can lead to a quite different behaviour from the one expected for their reciprocal counterparts. Here we examine the buckling of a hexagonal 2D plasma crystal, occurring as the confinement strength is decreased, taking explicitly into account the non-reciprocity of the system via a well-established point-particle wake model. We observe that for a finite wake charge, the monolayer hexagonal crystal undergoes a transition first to a bilayer hexagonal structure, unrealisable in harmonically confined reciprocal Yukawa systems, and subsequently to a bilayer square structure. Our theoretical results are confirmed by molecular dynamics simulations for experimentally relevant parameters, indicating the potential of their observation in state-of-the-art experiments with 2D complex plasmas.