论文标题

通过极端steklov特征值问题计算自由边界最小表面

Computation of free boundary minimal surfaces via extremal Steklov eigenvalue problems

论文作者

Kao, Chiu-Yen, Osting, Braxton, Oudet, Èdouard

论文摘要

Recently Fraser and Schoen showed that the solution of a certain extremal Steklov eigenvalue problem on a compact surface with boundary can be used to generate a free boundary minimal surface, i.e., a surface contained in the ball that has (i) zero mean curvature and (ii) meets the boundary of the ball orthogonally (doi:10.1007/s00222-015-0604-x).在本文中,我们开发了使用此连接来实现自由边界最小表面的数值方法。 Namely, on a compact surface, $Σ$, with genus $γ$ and $b$ boundary components, we maximize $σ_j(Σ,g) \ L(\partial Σ, g)$ over a class of smooth metrics, $g$, where $σ_j(Σ,g)$ is the $j$-th nonzero Steklov eigenvalue and $L(\partial Σ, g)$是$ \partialσ$的长度。我们的数值方法涉及(i)使用多重连接域的保形均匀化,以避免对指标类别的明确参数化,(ii)准确地解决了多连接域中的边界加权steklov特征性问题,以及(iii)基于基于梯度的优化方法,以开发这种非稳定的Eigenvalue eigenvalue问题。对于属$γ= 0 $和$ b = 2,\ dots,9、12、15、20 $边界组件,我们在数值上为第一个特征值解决了极端steklov问题。相应的本征函数会产生一个自由的边界最小表面,我们以惊人的图像显示。对于更高的特征值,数值证据表明,最大化器是退化的,但是我们计算了第二和第三本特征值的本地最大化器,其中$ b = 2 $边界组件以及第三和第五本特征值,$ b = 3 $界面。

Recently Fraser and Schoen showed that the solution of a certain extremal Steklov eigenvalue problem on a compact surface with boundary can be used to generate a free boundary minimal surface, i.e., a surface contained in the ball that has (i) zero mean curvature and (ii) meets the boundary of the ball orthogonally (doi:10.1007/s00222-015-0604-x). In this paper, we develop numerical methods that use this connection to realize free boundary minimal surfaces. Namely, on a compact surface, $Σ$, with genus $γ$ and $b$ boundary components, we maximize $σ_j(Σ,g) \ L(\partial Σ, g)$ over a class of smooth metrics, $g$, where $σ_j(Σ,g)$ is the $j$-th nonzero Steklov eigenvalue and $L(\partial Σ, g)$ is the length of $\partial Σ$. Our numerical method involves (i) using conformal uniformization of multiply connected domains to avoid explicit parameterization for the class of metrics, (ii) accurately solving a boundary-weighted Steklov eigenvalue problem in multi-connected domains, and (iii) developing gradient-based optimization methods for this non-smooth eigenvalue optimization problem. For genus $γ=0$ and $b=2,\dots, 9, 12, 15, 20$ boundary components, we numerically solve the extremal Steklov problem for the first eigenvalue. The corresponding eigenfunctions generate a free boundary minimal surface, which we display in striking images. For higher eigenvalues, numerical evidence suggests that the maximizers are degenerate, but we compute local maximizers for the second and third eigenvalues with $b=2$ boundary components and for the third and fifth eigenvalues with $b=3$ boundary components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源