论文标题
年轻,球状和核星簇中的质量和分层黑洞合并的速率
Mass and rate of hierarchical black hole mergers in young, globular and nuclear star clusters
论文作者
论文摘要
分层合并是通过动力学进化的二进制黑洞(BBH)形成的独特签名之一。在这里,我们提出了一种快速的半分析方法,以模拟核星簇(NSC),球状簇(GCS)和年轻星形簇(YSC)中的层次合并。由于逃逸速度不同,因此在NSC中,层次合并在NSC中比在GC和YSC中更为普遍。分层BBH的质量分布在很大程度上取决于第一代BBH的特性,例如其祖细胞的金属性。在我们的基准模型中,我们在NSC中形成了质量最高$ \ sim {} 10^3 $ M $ _ \ odot $的黑洞(BHS),最多可在GCS和YSC中使用$ \ sim {} 10^2 $ m $ _ \ odot $。当考虑到超过100 km〜s $^{ - 1} $的逃逸速度时,允许质量$> 10^3 $ m $ _ \ odot $的BHS在NSC中形成。层次合并导致对成对不稳定性质量间隙和中间质量BHS的BHS形成,但仅在金属贫困环境中。我们的模型中的本地BBH合并率从$ \ sim {} 10 $到$ \ sim {} 60 $ gpc $^{ - 3} $ yr $^{ - 1} $; NSCS中的层次BBHS帐户$ \ sim {} 10^{ - 2} -0.2 $ GPC $^{ - 3} $ yr $^{ - 1} $,具有强大的上限为$ \ sim {} 10 $ gpc $ gpc $ gpc $^{ - 3} $ yr $ yr $^$^$^{ - 1} $。当将我们的模型与第二重力波瞬态目录进行比较时,我们发现多个地层通道有利于重现观察到的BBH种群。
Hierarchical mergers are one of the distinctive signatures of binary black hole (BBH) formation through dynamical evolution. Here, we present a fast semi-analytic approach to simulate hierarchical mergers in nuclear star clusters (NSCs), globular clusters (GCs) and young star clusters (YSCs). Hierarchical mergers are more common in NSCs than they are in both GCs and YSCs, because of the different escape velocity. The mass distribution of hierarchical BBHs strongly depends on the properties of first-generation BBHs, such as their progenitor's metallicity. In our fiducial model, we form black holes (BHs) with masses up to $\sim{}10^3$ M$_\odot$ in NSCs and up to $\sim{}10^2$ M$_\odot$ in both GCs and YSCs. When escape velocities in excess of 100 km~s$^{-1}$ are considered, BHs with mass $>10^3$ M$_\odot$ are allowed to form in NSCs. Hierarchical mergers lead to the formation of BHs in the pair instability mass gap and intermediate-mass BHs, but only in metal-poor environments. The local BBH merger rate in our models ranges from $\sim{}10$ to $\sim{} 60$ Gpc$^{-3}$ yr$^{-1}$; hierarchical BBHs in NSCs account for $\sim{}10^{-2}- 0.2$ Gpc$^{-3}$ yr$^{-1}$, with a strong upper limit of $\sim{}10$ Gpc$^{-3}$ yr$^{-1}$. When comparing our models with the second gravitational-wave transient catalog, we find that multiple formation channels are favored to reproduce the observed BBH population.