论文标题

MaxSmooth:在全球21厘米宇宙学中应用的快速最大光滑功能拟合

maxsmooth: Rapid Maximally Smooth Function Fitting With Applications in Global 21-cm Cosmology

论文作者

Bevins, H. T. J., Handley, W. J., Fialkov, A., Acedo, E. de Lera, Greenhill, L. J., Price, D. C.

论文摘要

最大光滑的功能(MSF)是一种约束功能的一种形式,其中没有拐点或零交叉处于高阶衍生物。因此,它们在实验中具有信号恢复的应用,在这些实验中,感兴趣的信号预计将是不平滑的特征,并被较大的平滑信号或前景掩盖。它们还可以充当诊断系统学存在的强大工具。 MSF的约束性质使得将这些功能拟合成为非平凡的任务。我们介绍了MaxSmooth,这是一种使用二次编程来快速拟合MSF的开源软件包。我们通过与常用的拟合例程进行比较,证明了MaxSmooth的效率和可靠性,并表明我们可以将拟合时间缩短大约两个数量级。我们介绍和实现最大光滑功能,这对于描述前景中非平滑结构的元素很有用。这项工作是由21厘米宇宙学中前景建模的问题引起的。我们讨论了MaxSmooth在21-CM宇宙学上的应用,并使用实验中的数据来强调了这一点,以检测全球电离签名时代(边缘)和大孔径实验,以检测黑暗时代(Leda)实验。我们证明了在边缘数据中存在正弦的系统,与纯前景拟合相比,对数实验差为$ 86.19 \ pm0.12 $。 MSF在本文中首次应用于Leda的数据,我们确定了正弦系统的存在。 MaxSmooth是可以安装的,可在以下下载:https://github.com/htjb/maxsmooth

Maximally Smooth Functions (MSFs) are a form of constrained functions in which there are no inflection points or zero crossings in high order derivatives. Consequently, they have applications to signal recovery in experiments where signals of interest are expected to be non-smooth features masked by larger smooth signals or foregrounds. They can also act as a powerful tool for diagnosing the presence of systematics. The constrained nature of MSFs makes fitting these functions a non-trivial task. We introduce maxsmooth, an open source package that uses quadratic programming to rapidly fit MSFs. We demonstrate the efficiency and reliability of maxsmooth by comparison to commonly used fitting routines and show that we can reduce the fitting time by approximately two orders of magnitude. We introduce and implement with maxsmooth Partially Smooth Functions, which are useful for describing elements of non-smooth structure in foregrounds. This work has been motivated by the problem of foreground modelling in 21-cm cosmology. We discuss applications of maxsmooth to 21-cm cosmology and highlight this with examples using data from the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) and the Large-aperture Experiment to Detect the Dark Ages (LEDA) experiments. We demonstrate the presence of a sinusoidal systematic in the EDGES data with a log-evidence difference of $86.19\pm0.12$ when compared to a pure foreground fit. MSFs are applied to data from LEDA for the first time in this paper and we identify the presence of sinusoidal systematics. maxsmooth is pip installable and available for download at: https://github.com/htjb/maxsmooth

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源