论文标题
自动探索机器人行为的开发周期
A Development Cycle for Automated Self-Exploration of Robot Behaviors
论文作者
论文摘要
在本文中,我们介绍了Q-Rock,这是机器人行为自动探索和资格的开发周期。借助Q-Rock,我们提出了一种新型的综合方法来自动化机器人开发过程。 Q-Rock结合了几种机器学习和推理技术,以应对机器人系统设计中日益增长的复杂性。 Q-Rock开发周期由三个互补过程组成:(1)给定的机器人硬件提供的功能的自动探索,(2)这些能力的分类和语义注释以产生更复杂的行为,以及(3)应用程序要求和可用行为之间的映射。这些过程基于机器人结构的基于图的表示,包括硬件和软件组件。一个中心可扩展的知识基础使机器人设计人员的合作包括机械,电气和系统工程师,软件开发人员以及机器学习专家。在本文中,我们将Q-Rock的综合开发周期形式化,并通过概念验证实施和用例演示强调了其好处。
In this paper we introduce Q-Rock, a development cycle for the automated self-exploration and qualification of robot behaviors. With Q-Rock, we suggest a novel, integrative approach to automate robot development processes. Q-Rock combines several machine learning and reasoning techniques to deal with the increasing complexity in the design of robotic systems. The Q-Rock development cycle consists of three complementary processes: (1) automated exploration of capabilities that a given robotic hardware provides, (2) classification and semantic annotation of these capabilities to generate more complex behaviors, and (3) mapping between application requirements and available behaviors. These processes are based on a graph-based representation of a robot's structure, including hardware and software components. A central, scalable knowledge base enables collaboration of robot designers including mechanical, electrical and systems engineers, software developers and machine learning experts. In this paper we formalize Q-Rock's integrative development cycle and highlight its benefits with a proof-of-concept implementation and a use case demonstration.