论文标题

蠕动泵送薄,非轴对称的环形管

Peristaltic pumping in thin, non-axisymmetric, annular tubes

论文作者

Carr, J. Brennen, Thomas, John H., Liu, Jia, Shang, Jessica K.

论文摘要

先前已经在矩形通道,圆形管和同心圆形的环中研究了由于移动壁波引起的粘性流体的二维层流流。在这里,我们研究了非轴对称环管中的蠕动流,其中流量为三维,具有方位角运动。这种几何形状是由沿着大脑中动脉周围动脉周围的脑脊液流动的实验观察到的,至少部分由蠕动泵送驱动。这些PVS在横截面中通过由内圆(动脉壁)和外椭圆(PVS的外边缘)组成的可调节模型在横截面上良好匹配,不一定是同心。我们使用此模型(可能具有其他应用程序)作为蠕动流数值模拟的基础。我们使用有限元方案来计算内壁的传播正弦径向位移驱动的流动。与同心圆形环中的蠕动流不同,流动是完全三维的,流线在径向和轴向方向上摇摆。我们检查了流动对外椭圆壁伸长的依赖性以及对构型的偏心率的依赖性。我们发现,随着椭圆时或偏心率的增加,时间平均的体积流量会降低。由壁波引起的方位压变化,驱动振荡的方位角流入和流出较窄的间隙。方位角方向的额外剪切运动将增强这些流动中的泰勒分散体,这种效果可能具有实际应用。

Two-dimensional laminar flow of a viscous fluid induced by peristalsis due to a moving wall wave has been studied previously for a rectangular channel, a circular tube, and a concentric circular annulus. Here we study peristaltic flow in a non-axisymmetric annular tube, where the flow is three dimensional, with azimuthal motions. This geometry is motivated by experimental observations of cerebrospinal fluid flow along perivascular spaces (PVSs) surrounding arteries in the brain, which is at least partially driven by peristaltic pumping. These PVSs are well matched, in cross-section, by an adjustable model consisting of an inner circle (arterial wall) and an outer ellipse (outer edge of the PVS), not necessarily concentric. We use this model, which may have other applications, as a basis for numerical simulations of peristaltic flow. We use a finite-element scheme to compute the flow driven by a propagating sinusoidal radial displacement of the inner wall. Unlike peristaltic flow in a concentric circular annulus, the flow is fully three-dimensional, with streamlines wiggling in both the radial and axial directions. We examine the dependence of the flow on the elongation of the outer elliptical wall and on the eccentricity of the configuration. We find that time-averaged volumetric flow decreases with increasing ellipticity or eccentricity. Azimuthal pressure variations, caused by the wall wave, drive an oscillatory azimuthal flow in and out of the narrower gaps. The additional shearing motion in the azimuthal direction will enhance Taylor dispersion in these flows, an effect that might have practical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源