论文标题

GAIA-DR2扩展了运动图。第三部分:旋转曲线分析,暗物质和修改的牛顿动力学测试

Gaia-DR2 extended kinematical maps. Part III: Rotation curves analysis, dark matter, and Modified Newtonian dynamics tests

论文作者

Chrobáková, Ž., López-Corredoira, M., Labini, F. Sylos, Wang, H. -F., Nagy, R.

论文摘要

最近的统计反向卷积方法在一系列的地中心距离中产生了扩展的运动图,这些距离比基于相同数据的Gaia协作中分析的距离大于两到三个。在本文中,我们使用此类图来得出银河平面和平面区域中的旋转曲线并分析密度分布。通过假设固定平衡和轴对称性,我们使用牛仔裤方程来得出旋转曲线。然后,我们将其与密度模型拟合,其中包括暗物质和预测MOND(修改的牛顿动力学)理论。由于银河系表现出与轴对称和平衡的偏差,因此我们还考虑了对牛仔裤方程的校正。为了计算此类校正,我们进行了模拟磁盘星系的N体实验,在该实验中,从平衡的出发随着距中心距离的函数而变得更大。用牛仔裤方程式构建的银河系外磁盘的旋转曲线表现出对$ r $和$ z $的依赖性,并且既适合深色的晕圈和Mond型号。在偏离平衡和轴对称的系统的情况下,牛仔裤方程的应用得出旋转曲线,引入了系统的误差,这些误差随着平均径向速度振幅的函数而生长。在银河系的情况下,我们可以观察到径向速度的幅度达到$ \ sim 10 \%$ $ r \ r \ 20 $ kpc。基于这种情况,使用从牛仔裤方程获得的旋转曲线来计算质量,可能会高估其测量值。

Recent statistical deconvolution methods have produced extended kinematical maps in a range of heliocentric distances that are a factor of two to three larger than those analysed in the Gaia Collaboration based on the same data. In this paper, we use such maps to derive the rotation curve both in the Galactic plane and in off-plane regions and to analyse the density distribution. By assuming stationary equilibrium and axisymmetry, we used the Jeans equation to derive the rotation curve. Then we fit it with density models that include both dark matter and predictions of the MOND (Modified Newtonian dynamics) theory. Since the Milky Way exhibits deviations from axisymmetry and equilibrium, we also considered corrections to the Jeans equation. To compute such corrections, we ran N-body experiments of mock disk galaxies where the departure from equilibrium becomes larger as a function of the distance from the centre. The rotation curve in the outer disk of the Milky Way that is constructed with the Jeans equation exhibits very low dependence on $R$ and $z$ and it is well-fitted both by dark matter halo and MOND models. The application of the Jeans equation for deriving the rotation curve, in the case of the systems that deviate from equilibrium and axisymmetry, introduces systematic errors that grow as a function of the amplitude of the average radial velocity. In the case of the Milky Way, we can observe that the amplitude of the radial velocity reaches $\sim 10\%$ that of the azimuthal one at $R\approx 20$ kpc. Based on this condition, using the rotation curve obtained from the Jeans equation to calculate the mass may overestimate its measurement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源