论文标题
SIPMASK:快速图像和视频实例细分的空间信息保护
SipMask: Spatial Information Preservation for Fast Image and Video Instance Segmentation
论文作者
论文摘要
单阶段实例分割方法最近由于其速度和简单性而变得流行,但与两阶段方法相比,准确性仍然落后。我们提出了一种称为SIPMASK的快速单阶段实例分割方法,该方法通过将实例的掩码预测分离为检测到的边界盒的不同子区域来保存实例特定的空间信息。我们的主要贡献是一种新型的轻型空间保存(SP)模块,该模块在一个边界盒中为每个子区域生成了一组空间系数,从而改善了掩模的预测。它还可以准确描述空间相邻的实例。此外,我们引入了掩模对准加权损失和功能比对方案,以更好地将掩码预测与对象检测相关联。在可可测试-DEV上,我们的SIPMASK优于现有的单阶段方法。与最先进的单阶段张托管仪相比,SIPMASK获得的绝对增益为1.0%(Mask AP),同时提供了四倍的加速。在实时功能方面,SIPMASK在类似设置下的绝对增益(Mask AP)的绝对增益优于YoLact,而在Titan XP上以可比的速度运行。我们还评估了我们的SIPMASK以进行实时视频实例细分,从而在YouTube-VIS数据集上取得了令人鼓舞的结果。源代码可在https://github.com/jialecao001/sipmask上找到。
Single-stage instance segmentation approaches have recently gained popularity due to their speed and simplicity, but are still lagging behind in accuracy, compared to two-stage methods. We propose a fast single-stage instance segmentation method, called SipMask, that preserves instance-specific spatial information by separating mask prediction of an instance to different sub-regions of a detected bounding-box. Our main contribution is a novel light-weight spatial preservation (SP) module that generates a separate set of spatial coefficients for each sub-region within a bounding-box, leading to improved mask predictions. It also enables accurate delineation of spatially adjacent instances. Further, we introduce a mask alignment weighting loss and a feature alignment scheme to better correlate mask prediction with object detection. On COCO test-dev, our SipMask outperforms the existing single-stage methods. Compared to the state-of-the-art single-stage TensorMask, SipMask obtains an absolute gain of 1.0% (mask AP), while providing a four-fold speedup. In terms of real-time capabilities, SipMask outperforms YOLACT with an absolute gain of 3.0% (mask AP) under similar settings, while operating at comparable speed on a Titan Xp. We also evaluate our SipMask for real-time video instance segmentation, achieving promising results on YouTube-VIS dataset. The source code is available at https://github.com/JialeCao001/SipMask.