论文标题
增强的放松物理化分解预处理耦合的门能力学
Enhanced Relaxed Physical Factorization preconditioner for coupled poromechanics
论文作者
论文摘要
松弛的物理分解(RPF)预处理是一种近期算法,允许对由三个场置换式 - 速度压力构图产生的块线性系统的有效且可靠的解决方案。但是,对于其应用,有必要以代数形式$ \ hat {c} =(c +βff^t)$反转块,其中$ c $是一种对称的正定矩阵,$ ff^t $ a排名不足的术语,$β$ $β$是一个真正的非简洁系数。以不精确的方式执行的$ \ hat {c} $的反转可能对$β$的大值变得不稳定,因为它通常发生在完整的Poromechanical模拟的某些阶段。在这项工作中,我们建议使用$ \ hat {c} $稳定不精确的代数技术系列。这种策略也可以在可能出现的问题的其他问题中证明是有用的,例如增强Navier-Stokes或不可压缩弹性的Lagrangian预处理技术。首先,我们引入了一种迭代方案,该方案是通过矩阵$ \ hat {c} $的自然分裂获得的。其次,我们根据使用适当的投影操作员歼灭$ \ hat {c} $的近内分模式的技术开发技术。两种方法都产生了一种新型的预处理,称为增强的RPF(ERPF)。在理论基准和现实世界大小的应用中,都证明了所提出算法的有效性和鲁棒性,表现优于天然RPF预处理器。
The relaxed physical factorization (RPF) preconditioner is a recent algorithm allowing for the efficient and robust solution to the block linear systems arising from the three-field displacement-velocity-pressure formulation of coupled poromechanics. For its application, however, it is necessary to invert blocks with the algebraic form $\hat{C} = ( C + βF F^T)$, where $C$ is a symmetric positive definite matrix, $FF^T$ a rank-deficient term, and $β$ a real non-negative coefficient. The inversion of $\hat{C}$, performed in an inexact way, can become unstable for large values of $β$, as it usually occurs at some stages of a full poromechanical simulation. In this work, we propose a family of algebraic techniques to stabilize the inexact solve with $\hat{C}$. This strategy can prove useful in other problems as well where such an issue might arise, such as augmented Lagrangian preconditioning techniques for Navier-Stokes or incompressible elasticity. First, we introduce an iterative scheme obtained by a natural splitting of matrix $\hat{C}$. Second, we develop a technique based on the use of a proper projection operator annihilating the near-kernel modes of $\hat{C}$. Both approaches give rise to a novel class of preconditioners denoted as Enhanced RPF (ERPF). Effectiveness and robustness of the proposed algorithms are demonstrated in both theoretical benchmarks and real-world large-size applications, outperforming the native RPF preconditioner.