论文标题
关于与无限意见集的准确性和连贯性
On Accuracy and Coherence with Infinite Opinion Sets
论文作者
论文摘要
避免准确性优势和具有概率连贯的凭证之间存在众所周知的等效性(例如,参见,例如De Finetti 1974,Joyce 2009; Predd etal。2009; Schervish等,Schervish等,2009年,Pettigrew,2016年)。但是,仅当定义信任函数的一组命题是有限的,才建立了这种对等。在本文中,当在一组无限的命题上定义了信任函数时,我们建立了准确性优势与连贯性之间的联系。特别是,我们建立了必要的结果,以扩展概率的经典准确性论点,最初是由于乔伊斯(Joyce,1998)到某些无限类型的命题集,包括无数的无限分区。
There is a well-known equivalence between avoiding accuracy dominance and having probabilistically coherent credences (see, e.g., de Finetti 1974, Joyce 2009, Predd et al. 2009, Schervish et al. 2009, Pettigrew 2016). However, this equivalence has been established only when the set of propositions on which credence functions are defined is finite. In this paper, we establish connections between accuracy dominance and coherence when credence functions are defined on an infinite set of propositions. In particular, we establish the necessary results to extend the classic accuracy argument for probabilism originally due to Joyce (1998) to certain classes of infinite sets of propositions including countably infinite partitions.