论文标题
扩展多圈MRI中K空间下采样模式优化的助推器
Extending LOUPE for K-space Under-sampling Pattern Optimization in Multi-coil MRI
论文作者
论文摘要
将先前建立的Loupe(基于学习下采样模式的基于学习的优化)分为三倍:首先,从扫描仪中延长了三倍:首先,完全采样的多型k-空间数据,而不是模拟k-空间数据,而不是从LOVE中的MR图像中的大小MR图像进行回顾性的数据,以使其绘制不足的数据效果,以下数据是Somplace breacple sammpled的数据。其次,将二元随机K空间采样,而不是训练过程中Loupe的近似随机K空间采样,并将其与直接直接(ST)估计器一起估算神经网络中阈值操作的梯度。第三,经过修改的展开优化网络,而不是Loupe中修改的U-NET,用作重建网络,以正确地重建多层型数据并减少对培训数据的依赖性。实验结果表明,与具有U-NET重建网络或近似近似采样模式优化网络的二元采样块和ST估计器相比,具有二进制降采样块和ST估算器的展开优化网络在使用二进制下采样块和ST估算器的性能更好的优化网络或曾经经过训练的训练时,与手工制作的方法更能更好地训练时,与其他训练更好的方法相比,与其他训练更更好的降低方法相比。
The previously established LOUPE (Learning-based Optimization of the Under-sampling Pattern) framework for optimizing the k-space sampling pattern in MRI was extended in three folds: firstly, fully sampled multi-coil k-space data from the scanner, rather than simulated k-space data from magnitude MR images in LOUPE, was retrospectively under-sampled to optimize the under-sampling pattern of in-vivo k-space data; secondly, binary stochastic k-space sampling, rather than approximate stochastic k-space sampling of LOUPE during training, was applied together with a straight-through (ST) estimator to estimate the gradient of the threshold operation in a neural network; thirdly, modified unrolled optimization network, rather than modified U-Net in LOUPE, was used as the reconstruction network in order to reconstruct multi-coil data properly and reduce the dependency on training data. Experimental results show that when dealing with the in-vivo k-space data, unrolled optimization network with binary under-sampling block and ST estimator had better reconstruction performance compared to the ones with either U-Net reconstruction network or approximate sampling pattern optimization network, and once trained, the learned optimal sampling pattern worked better than the hand-crafted variable density sampling pattern when deployed with other conventional reconstruction methods.