论文标题
RMPFlow:用于生成多任务运动策略的几何框架
RMPflow: A Geometric Framework for Generation of Multi-Task Motion Policies
论文作者
论文摘要
在动态环境中为多个任务生成机器人运动很具有挑战性,要求算法在考虑任务之间复杂的非线性关系时反应反应。在本文中,我们基于riemannian运动策略(RMPS)的几何一致转换,开发了一种新型的策略合成算法RMPFlow。 RMP是一类反应性运动策略,在本质非线性任务空间中,将非欧几里得行为参数化为动态系统。给定一组专为单个任务设计的RMP,RMPFlow可以将这些策略结合起来,以生成表现力的全球策略,同时利用稀疏结构来提高计算效率。我们研究了RMPFlow的几何特性,并为稳定性提供了足够的条件。最后,我们在实验上证明了任务策略的自然riemannian几何形状可以简化经典的困难问题,例如通过杂乱无章的高功能操纵系统进行计划。
Generating robot motion for multiple tasks in dynamic environments is challenging, requiring an algorithm to respond reactively while accounting for complex nonlinear relationships between tasks. In this paper, we develop a novel policy synthesis algorithm, RMPflow, based on geometrically consistent transformations of Riemannian Motion Policies (RMPs). RMPs are a class of reactive motion policies that parameterize non-Euclidean behaviors as dynamical systems in intrinsically nonlinear task spaces. Given a set of RMPs designed for individual tasks, RMPflow can combine these policies to generate an expressive global policy, while simultaneously exploiting sparse structure for computational efficiency. We study the geometric properties of RMPflow and provide sufficient conditions for stability. Finally, we experimentally demonstrate that accounting for the natural Riemannian geometry of task policies can simplify classically difficult problems, such as planning through clutter on high-DOF manipulation systems.