论文标题

处理统计形状分析中的混杂变量 - 应用于心脏重塑

Handling confounding variables in statistical shape analysis -- application to cardiac remodelling

论文作者

Bernardino, Gabriel, Benkarim, Oualid, la Garza, María Sanz-de, Prat-Gonzàlez, Susanna, Sepulveda-Martinez, Álvaro, Crispi, Fàtima, Sitges, Marta, De Craene, Mathieu, Bijnens, Bart, Ballester, Miguel Ángel González

论文摘要

统计形状分析是评估器官形态并发现与特定疾病相关的形状变化的强大工具。但是,如果没有考虑到,诸如人口统计学之类的混杂因素的不平衡可能会使分析无效。尽管该领域的方法学进步,提供了能够捕获复杂和区域形状差异的新方法,但非成像信息与形状可变性之间的关系已被忽略。我们提出了一个线性统计形状分析框架,该框架发现形状差异与一组受控的混杂变量无关。它包括两种混杂的校正方法:混杂的通缩和调整。我们将框架应用于心脏磁共振成像数据集,该数据集由89个铁人三项运动员和77个对照组成,以识别由于耐力运动的实践而导致的心脏重塑。为了测试对混杂因素的鲁棒性,该数据集的子集是通过随机去除体重指数低的控件而产生的,从而引入了失衡。对整个数据集的分析表明,运动员中心室体积和心肌肿块的增加,这与临床文献一致。但是,当未考虑混杂因素时,找不到心肌质量的增加。使用倒数采样的数据集,我们发现需要使用混淆器调整方法来在不平衡数据集中找到真正的重塑模式。

Statistical shape analysis is a powerful tool to assess organ morphologies and find shape changes associated to a particular disease. However, imbalance in confounding factors, such as demographics might invalidate the analysis if not taken into consideration. Despite the methodological advances in the field, providing new methods that are able to capture complex and regional shape differences, the relationship between non-imaging information and shape variability has been overlooked. We present a linear statistical shape analysis framework that finds shape differences unassociated to a controlled set of confounding variables. It includes two confounding correction methods: confounding deflation and adjustment. We applied our framework to a cardiac magnetic resonance imaging dataset, consisting of the cardiac ventricles of 89 triathletes and 77 controls, to identify cardiac remodelling due to the practice of endurance exercise. To test robustness to confounders, subsets of this dataset were generated by randomly removing controls with low body mass index, thus introducing imbalance. The analysis of the whole dataset indicates an increase of ventricular volumes and myocardial mass in athletes, which is consistent with the clinical literature. However, when confounders are not taken into consideration no increase of myocardial mass is found. Using the downsampled datasets, we find that confounder adjustment methods are needed to find the real remodelling patterns in imbalanced datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源