论文标题

使用每次突触的单感操作,用电阻RAM实施三元重量

Implementation of Ternary Weights with Resistive RAM Using a Single Sense Operation per Synapse

论文作者

Laborieux, Axel, Bocquet, Marc, Hirtzlin, Tifenn, Klein, Jacques-Olivier, Nowak, Etienne, Vianello, Elisa, Portal, Jean-Michel, Querlioz, Damien

论文摘要

实施具有较低精度神经网络的系统的设计具有新兴记忆,例如电阻随机访问记忆(RRAM),是减少人工智能能源消耗的重要领导。为了在此类系统中实现最大的能源效率,应尽可能紧密地集成逻辑和内存。在这项工作中,我们专注于三元神经网络的情况,其中突触权重假设三元值。我们提出了一种使用percharge sense放大器的两轨道/两抗记忆体系结构,其中可以在单个感觉操作中提取权重值。基于具有此感觉放大器的混合130 nm CMOS/RRAM芯片的实验测量,我们表明该技术在低电源电压下特别适合,并且对于过程,电压和温度变化是弹性的。我们表征了方案中的位错误率。我们根据CIFAR-10图像识别任务的神经网络模拟显示,使用三元神经网络的使用可显着提高神经网络的性能,而对于二进制二进制,这些神经网络通常是推理硬件而言通常是首选的。我们最终证明了神经网络对我们方案中观察到的位误差的类型免疫,因此可以在没有误差校正的情况下使用。

The design of systems implementing low precision neural networks with emerging memories such as resistive random access memory (RRAM) is a significant lead for reducing the energy consumption of artificial intelligence. To achieve maximum energy efficiency in such systems, logic and memory should be integrated as tightly as possible. In this work, we focus on the case of ternary neural networks, where synaptic weights assume ternary values. We propose a two-transistor/two-resistor memory architecture employing a precharge sense amplifier, where the weight value can be extracted in a single sense operation. Based on experimental measurements on a hybrid 130 nm CMOS/RRAM chip featuring this sense amplifier, we show that this technique is particularly appropriate at low supply voltage, and that it is resilient to process, voltage, and temperature variations. We characterize the bit error rate in our scheme. We show based on neural network simulation on the CIFAR-10 image recognition task that the use of ternary neural networks significantly increases neural network performance, with regards to binary ones, which are often preferred for inference hardware. We finally evidence that the neural network is immune to the type of bit errors observed in our scheme, which can therefore be used without error correction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源