论文标题

在密度功能理论中用于全电子计算的无正交的无平行框架

An orthogonalization-free parallelizable framework for all-electron calculations in density functional theory

论文作者

Gao, Bin, Hu, Guanghui, Kuang, Yang, Liu, Xin

论文摘要

全电子计算在密度功能理论中起重要作用,在密度功能理论中,提高计算效率是最需要和最具挑战性的任务之一。在模型制定中,非线性特征值问题和总能量最小化问题都追求正交解决方案。大多数现有的算法用于求解这两个模型在每次迭代中明确或隐式调用正交过程。鉴于大规模系统的电子数量,它们的效率遭受了此过程的影响。为了突破这种瓶颈,我们提出了基于总能量最小化问题的无正交算法框架。结果表明,所需的正交性可以逐渐实现,而无需在每次迭代中调用正交化。此外,该框架完全由基本的线性代数子程序(BLAS)操作组成,因此可以自然平行。建立了所提出算法的全球融合。我们还提出了一种前提技术,该技术可以显着加速该算法的收敛性。全电子计算上的数值实验显示了所提出算法的效率和高伸缩性。

All-electron calculations play an important role in density functional theory, in which improving computational efficiency is one of the most needed and challenging tasks. In the model formulations, both nonlinear eigenvalue problem and total energy minimization problem pursue orthogonal solutions. Most existing algorithms for solving these two models invoke orthogonalization process either explicitly or implicitly in each iteration. Their efficiency suffers from this process in view of its cubic complexity and low parallel scalability in terms of the number of electrons for large scale systems. To break through this bottleneck, we propose an orthogonalization-free algorithm framework based on the total energy minimization problem. It is shown that the desired orthogonality can be gradually achieved without invoking orthogonalization in each iteration. Moreover, this framework fully consists of Basic Linear Algebra Subprograms (BLAS) operations and thus can be naturally parallelized. The global convergence of the proposed algorithm is established. We also present a precondition technique which can dramatically accelerate the convergence of the algorithm. The numerical experiments on all-electron calculations show the efficiency and high scalability of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源