论文标题

双重半整合性,用于无法折磨的切割盖及其在最大半融合流程中的应用

Dual Half-integrality for Uncrossable Cut Cover and its Application to Maximum Half-Integral Flow

论文作者

Garg, Naveen, Kumar, Nikhil

论文摘要

给定边缘加权图和森林$ f $,$ \ textIt {2- edge连接增强性问题} $是选择一组最小加权的边缘,$ e'$,以使$ e'\ cup f $的每个连接组件是2-EDGE连接。威廉姆森等人。使用Primal Dual模式给出了此问题的2个附属算法(WGMV)。我们表明,当边缘重量是不可或缺的时,可以对WGMV过程进行修改以获得半融合双重。 2边缘连接增强问题与图表中的路由流有一个有趣的连接,在该图中,供需结合是平面的。双重的半融合性导致紧密的2个最大最大半集成流动型微型属性定理。

Given an edge weighted graph and a forest $F$, the $\textit{2-edge connectivity augmentation problem}$ is to pick a minimum weighted set of edges, $E'$, such that every connected component of $E'\cup F$ is 2-edge connected. Williamson et al. gave a 2-approximation algorithm (WGMV) for this problem using the primal-dual schema. We show that when edge weights are integral, the WGMV procedure can be modified to obtain a half-integral dual. The 2-edge connectivity augmentation problem has an interesting connection to routing flow in graphs where the union of supply and demand is planar. The half-integrality of the dual leads to a tight 2-approximate max-half-integral-flow min-multicut theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源