论文标题
融合生物组织的细胞POTTS模型中平衡玻璃动力学的理论和模拟
Theory and simulation for equilibrium glassy dynamics in cellular Potts model of confluent biological tissue
论文作者
论文摘要
汇合单层中的玻璃动力学在形态发生,伤口愈合,支气管哮喘等方面是必不可少的。因此,对这种系统的详细理论框架很重要。顶点模型(VM)模拟为此类系统的动力学提供了重要的见解,但是它们的非平衡性质使理论发展变得困难。汇合单层的细胞POTTS模型(CPM)为具有明确定义的平衡极限的系统提供了替代模型。我们结合了CPM的数值模拟和基于平衡玻璃,随机一阶过渡理论的最成功理论之一的分析研究,并为汇合的玻璃系统开发了全面的理论框架。我们发现CPM内的玻璃动力学在质量上与VM中的玻璃动力学相似。我们的研究阐明了几何限制在带来动态中约有两个截然不同的方案中的关键作用,因为目标周长$ p_0 $是不同的。不寻常的亚arrhenius弛豫是由此类系统中周长约束产生的独特相互作用潜力引起的。系统的脆弱性随着$ P_0 $ $ $ $ $ P_0 $的增加而降低,而动力学独立于其他制度中的$ P_0 $。在CPM中没有在VM中发现的刚度转变;这种差异似乎来自前者的非平衡性质。我们表明,CPM通过将我们的数值结果与在不同系统上的现有实验进行比较,捕获了融合生物系统中玻璃动力学的基本现象学。
Glassy dynamics in a confluent monolayer is indispensable in morphogenesis, wound healing, bronchial asthma, and many others; a detailed theoretical framework for such a system is, therefore, important. Vertex model (VM) simulations have provided crucial insights into the dynamics of such systems, but their nonequilibrium nature makes it difficult for theoretical development. Cellular Potts model (CPM) of confluent monolayer provides an alternative model for such systems with a well-defined equilibrium limit. We combine numerical simulations of CPM and an analytical study based on one of the most successful theories of equilibrium glass, the random first order transition theory, and develop a comprehensive theoretical framework for a confluent glassy system. We find that the glassy dynamics within CPM is qualitatively similar to that in VM. Our study elucidates the crucial role of geometric constraints in bringing about two distinct regimes in the dynamics, as the target perimeter $P_0$ is varied. The unusual sub-Arrhenius relaxation results from the distinctive interaction potential arising from the perimeter constraint in such systems. Fragility of the system decreases with increasing $P_0$ in the low-$P_0$ regime, whereas the dynamics is independent of $P_0$ in the other regime. The rigidity transition, found in VM, is absent within CPM; this difference seems to come from the nonequilibrium nature of the former. We show that CPM captures the basic phenomenology of glassy dynamics in a confluent biological system via comparison of our numerical results with existing experiments on different systems.