论文标题

六边形伊辛·康多晶格:对固有的抗铁磁拓扑绝缘子的含义

Hexagon Ising-Kondo lattice: An implication for intrinsic antiferromagnetic topological insulator

论文作者

Yang, Wei-Wei, Zhong, Yin, Luo, Hong-Gang

论文摘要

最近,已经提出了MNBI $ _2 $ _4 $材料作为第一个固有的抗铁磁拓扑绝缘子(AFMTI),其中磁性和拓扑之间的相互作用引起了几个引人入胜的拓扑阶段,例如量子造成量子霍尔效应,主要响应效果,主要纤维纤维效应,主要轴承电子学和轴心电子学。但是,仍然没有一个可解决的模型,能够捕获磁性和拓扑之间相互作用的基本物理学。在这里,受伊辛般的本性的启发[B. li \ textit {et al。} phys。莱特牧师。 \ textbf {124},167204(2020)]和mnbi $ _2 $ _2 $ te $ _4 $的拓扑特性,我们提出了一个拓扑伊辛辛·康多·晶格(TIKL)模型,以零温度以分析方式研究其基态属性。所得的相图包括丰富的拓扑和磁状态,这些状态以自然且一致的方式为固有的磁性拓扑绝缘子而出现。通过Monte Carlo模拟,我们将AFMTI基态扩展到有限的温度。它揭示了拓扑特性确实在高温下维持,甚至可以在适当的相关强度下通过升高的温度恢复。结果表明,TIKL可能会为未来的实验研究提供见解,可以对此进行微调和运输特性,以实现更稳定和外来的磁性拓扑量子状态。

Recently, the MnBi$_2$Te$_4$ material has been proposed as the first intrinsic antiferromagnetic topological insulator (AFMTI), where the interplay between magnetism and topology induces several fascinating topological phases, such as the quantum anomalous Hall effect, Majorana fermions, and axion electrodynamics. However, an exactly solvable model being capable to capture the essential physics of the interplay between magnetism and topology is still absent. Here, inspired by the the Ising-like nature [B. Li \textit{et al.} Phys. Rev. Lett. \textbf{124}, 167204 (2020)] and the topological property of MnBi$_2$Te$_4$, we propose a topological Ising-Kondo lattice (TIKL) model to study its ground state property in an analytical way at zero temperature. The resultant phase diagram includes rich topological and magnetic states, which emerge in the model proposed in a natural and consistent way for the intrinsic magnetic topological insulator. With Monte Carlo simulation, we extend the AFMTI ground state to finite temperature. It reveals that topological properties do sustain at high temperature, which even can be restored by elevated temperature at suitable correlation strength. The results demonstrate that TIKL may offer an insight for future experimental research, with which magnetism and transport properties could be fine tuned to achieve more stable and exotic magnetic topological quantum states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源