论文标题
朝零射击无监督的图像到图像翻译
Toward Zero-Shot Unsupervised Image-to-Image Translation
论文作者
论文摘要
最近的研究表明,在无监督的图像到图像翻译中取得了显着成功。但是,如果目标类中无法访问足够的图像,则学习从源类到目标类的映射总是会遭受模式崩溃,这限制了现有方法的应用。在这项工作中,我们通过将类别与属性(如属性)相关联,提出了一个零射击的无监督图像到图像翻译框架,以解决此限制。为了将翻译器概括为以前的看不见的类,我们介绍了两种利用语义属性跨越的空间的策略。具体而言,我们建议通过利用看不见类的属性向量来保护对视觉空间的语义关系,并扩展属性空间,从而鼓励翻译探索看不见的类的模式。不同数据集上的定量和定性结果证明了我们提出的方法的有效性。此外,我们证明我们的框架可以应用于许多任务,例如零击分类和时装设计。
Recent studies have shown remarkable success in unsupervised image-to-image translation. However, if there has no access to enough images in target classes, learning a mapping from source classes to the target classes always suffers from mode collapse, which limits the application of the existing methods. In this work, we propose a zero-shot unsupervised image-to-image translation framework to address this limitation, by associating categories with their side information like attributes. To generalize the translator to previous unseen classes, we introduce two strategies for exploiting the space spanned by the semantic attributes. Specifically, we propose to preserve semantic relations to the visual space and expand attribute space by utilizing attribute vectors of unseen classes, thus encourage the translator to explore the modes of unseen classes. Quantitative and qualitative results on different datasets demonstrate the effectiveness of our proposed approach. Moreover, we demonstrate that our framework can be applied to many tasks, such as zero-shot classification and fashion design.