论文标题

通过视觉惯性输入和循环网络进行在线碰撞的避免风险的MPC

Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for Online Collision Avoidance

论文作者

Schperberg, Alexander, Chen, Kenny, Tsuei, Stephanie, Jewett, Michael, Hooks, Joshua, Soatto, Stefano, Mehta, Ankur, Hong, Dennis

论文摘要

在本文中,我们提出了一个在线路径规划体系结构,该架构扩展了模型预测控制(MPC)公式,以考虑通过混乱环境来考虑更安全导航的未来位置不确定性。我们的算法将对象检测管道与复发性神经网络(RNN)相结合,该算法通过MPC有限的时间范围的每个步骤渗透了状态估计的协方差。 RNN模型在一个数据集上进行了训练,该数据集由机器人和地标成于相机图像和惯性测量单元(IMU)读数(通过最先进的视觉持续持续频道尺寸框架)产生的训练。为了检测和提取对象位置以避免,我们将定制的卷积神经网络模型与特征提取器结合使用,以检索附近障碍物的3D质心和半径边界。我们方法的鲁棒性在复杂的四足机器人动力学上得到了验证,通常可以应用于大多数机器人平台,这证明了可以快速且无碰撞的路径向目标点计划的自主行为。

In this paper, we propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties for safer navigation through cluttered environments. Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates through each step of our MPC's finite time horizon. The RNN model is trained on a dataset that comprises of robot and landmark poses generated from camera images and inertial measurement unit (IMU) readings via a state-of-the-art visual-inertial odometry framework. To detect and extract object locations for avoidance, we use a custom-trained convolutional neural network model in conjunction with a feature extractor to retrieve 3D centroid and radii boundaries of nearby obstacles. The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms, demonstrating autonomous behaviors that can plan fast and collision-free paths towards a goal point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源