论文标题

高速公路上高度自动驾驶的车道变化启动和计划方法

Lane-Change Initiation and Planning Approach for Highly Automated Driving on Freeways

论文作者

Arbabi, Salar, Dixit, Shilp, Zheng, Ziyao, Oxtoby, David, Mouzakitis, Alexandros, Fallah, Saber

论文摘要

量化和编码乘员的偏好作为自动驾驶汽车战术决策的目标功能是一项艰巨的任务。本文提出了一种低复杂的方法,用于换车开始,并计划促进高速公路上的高度自动驾驶。从自然主义的驾驶数据中学到了人类驾驶员发现不同动作的条件,从而消除了对工程目标功能的需求,并以规则形式纳入了专家知识。运动计划被制定为具有安全限制的有限马优化问题。结果表明,决策模型可以复制人类驾驶员的酌处道路改变决策,其准确性高达92%。显示了超车机动的概念模拟证明,从而在动态环境根据地面真相数据记录的情况下进化了模拟车辆的动作。

Quantifying and encoding occupants' preferences as an objective function for the tactical decision making of autonomous vehicles is a challenging task. This paper presents a low-complexity approach for lane-change initiation and planning to facilitate highly automated driving on freeways. Conditions under which human drivers find different manoeuvres desirable are learned from naturalistic driving data, eliminating the need for an engineered objective function and incorporation of expert knowledge in form of rules. Motion planning is formulated as a finite-horizon optimisation problem with safety constraints. It is shown that the decision model can replicate human drivers' discretionary lane-change decisions with up to 92% accuracy. Further proof of concept simulation of an overtaking manoeuvre is shown, whereby the actions of the simulated vehicle are logged while the dynamic environment evolves as per ground truth data recordings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源