论文标题

具有关节稀疏和低级学习的多光谱图像的光谱序列

Spectral Superresolution of Multispectral Imagery with Joint Sparse and Low-Rank Learning

论文作者

Gao, Lianru, Hong, Danfeng, Yao, Jing, Zhang, Bing, Gamba, Paolo, Chanussot, Jocelyn

论文摘要

广泛引起了广泛的注意,以增强遥感中多光谱(MS)图像的高光谱图像(HS)图像的空间分辨率。但是,由于HS图像的获取有限,HS和MS图像融合的能力仍有待提高,尤其是在大型场景中。或者,我们通过部分重叠的HS图像的途径在光谱域中超级溶解MS图像,从而产生了一个新颖而有希望的主题:MS成像的光谱上线(SSR)。这是充满挑战性的,由于其在反成像中的不良性不良,因此调查的任务较少。为此,我们开发了一种简单但有效的方法,称为关节稀疏和低级别学习(J-SLOL),以通过从重叠区域共同学习低级HS-MS字典对来频谱增强MS图像。 J-slol Infers通过在学习的词典对上进行稀疏编码,在更大的覆盖范围内恢复了未知的高光谱信号。此外,我们通过与几个现有的先进基准相比,在重建,分类和UNMIND方面验证了三个HS-MS数据集(两个用于分类,一个用于分类)的SSR性能,显示了建议的J-Slol算法的有效性和优越性。此外,这些代码和数据集将在以下网址提供:https://github.com/danfenghong/ieee \ _tgrs \ _j-slol,为RS社区做出贡献。

Extensive attention has been widely paid to enhance the spatial resolution of hyperspectral (HS) images with the aid of multispectral (MS) images in remote sensing. However, the ability in the fusion of HS and MS images remains to be improved, particularly in large-scale scenes, due to the limited acquisition of HS images. Alternatively, we super-resolve MS images in the spectral domain by the means of partially overlapped HS images, yielding a novel and promising topic: spectral superresolution (SSR) of MS imagery. This is challenging and less investigated task due to its high ill-posedness in inverse imaging. To this end, we develop a simple but effective method, called joint sparse and low-rank learning (J-SLoL), to spectrally enhance MS images by jointly learning low-rank HS-MS dictionary pairs from overlapped regions. J-SLoL infers and recovers the unknown hyperspectral signals over a larger coverage by sparse coding on the learned dictionary pair. Furthermore, we validate the SSR performance on three HS-MS datasets (two for classification and one for unmixing) in terms of reconstruction, classification, and unmixing by comparing with several existing state-of-the-art baselines, showing the effectiveness and superiority of the proposed J-SLoL algorithm. Furthermore, the codes and datasets will be available at: https://github.com/danfenghong/IEEE\_TGRS\_J-SLoL, contributing to the RS community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源