论文标题
使用动态认知蜜饯对横向运动的远视风险缓解风险
Farsighted Risk Mitigation of Lateral Movement Using Dynamic Cognitive Honeypots
论文作者
论文摘要
高级持续威胁的横向运动提出了严重的安全挑战。由于横向运动的隐秘和持续性,后卫需要整体上考虑时间和空间位置,以发现跨大型时间尺度的潜在攻击路径,并为目标资产实现长期安全性。在这项工作中,我们提出了一个时间扩展的随机网络,以建模用户主持企业网络和对抗性横向运动中的随机服务链接。我们在闲置生产节点上设计认知蜜罐,并掩盖蜂蜜链接,以检测和阻止对抗性侧向运动的服务链接。蜜罐的位置在不同时间随机变化,并增加了蜜罐的隐身性。由于辩护人不知道最初的入侵和横向运动是否发生,何时和何处发生,蜜罐政策旨在减少目标资产的长期脆弱性(LTV)以积极和持久保护。我们进一步描述了三个权衡,即干涉的可能性,隐形水平和漫游成本。为了应对多个攻击路径的诅咒,我们提出了一种迭代算法,并将LTV近似于与认知蜜饯的计算有效部署的联合。脆弱性分析的结果说明了当对抗侧向运动的持续时间时,LTV的边界,趋势和残基。除了蜜罐策略外,我们还获得了损害性的关键阈值,以指导当前系统参数的设计和修改,以提高长期安全性。我们表明,如果运动威慑的概率不小于阈值,则目标节点可以在横向运动的无限阶段下实现零漏洞。
Lateral movement of advanced persistent threats has posed a severe security challenge. Due to the stealthy and persistent nature of the lateral movement, defenders need to consider time and spatial locations holistically to discover latent attack paths across a large time-scale and achieve long-term security for the target assets. In this work, we propose a time-expanded random network to model the stochastic service links in the user-host enterprise network and the adversarial lateral movement. We design cognitive honeypots at idle production nodes and disguise honey links as service links to detect and deter the adversarial lateral movement. The location of the honeypot changes randomly at different times and increases the honeypots' stealthiness. Since the defender does not know whether, when, and where the initial intrusion and the lateral movement occur, the honeypot policy aims to reduce the target assets' Long-Term Vulnerability (LTV) for proactive and persistent protection. We further characterize three tradeoffs, i.e., the probability of interference, the stealthiness level, and the roaming cost. To counter the curse of multiple attack paths, we propose an iterative algorithm and approximate the LTV with the union bound for computationally efficient deployment of cognitive honeypots. The results of the vulnerability analysis illustrate the bounds, trends, and a residue of LTV when the adversarial lateral movement has infinite duration. Besides honeypot policies, we obtain a critical threshold of compromisability to guide the design and modification of the current system parameters for a higher level of long-term security. We show that the target node can achieve zero vulnerability under infinite stages of lateral movement if the probability of movement deterrence is not less than the threshold.