论文标题

线条:一个分析框架,用于评估平滑技术在线图上的有效性

LineSmooth: An Analytical Framework for Evaluating the Effectiveness of Smoothing Techniques on Line Charts

论文作者

Rosen, Paul, Quadri, Ghulam Jilani

论文摘要

我们提出了一个综合框架,用于评估各种视觉分析任务下的线条平滑方法。线图通常用于可视化一系列数据样本。当样品数量较大或数据嘈杂时,可以应用平滑性以使信号更加明显。但是,有多种可用的平滑技术,每个技术的有效性都取决于数据的性质和目前的视觉分析任务。迄今为止,可视化社区缺乏用于分析和分类各种可用平滑方法的摘要工作。在本文中,我们基于与8个低级视觉分析任务相关的线平滑有效性的8个措施建立了一个框架。然后,我们分析了来自4种常用的线图平滑类别的12种方法 - 排名过滤器,卷积过滤器,频域过滤器和子采样。结果表明,尽管没有任何方法是所有情况下的理想选择,但某些方法(例如高斯过滤器和基于拓扑的子采样)总体上表现良好。对于特定的视觉分析任务,其他方法(例如低通截止过滤器和Douglas-peucker subsmpling)都表现良好。几乎同样重要的是,我们的框架表明,包括常用的统一子采样在内的几种方法会产生低质量的结果,因此应避免使用。

We present a comprehensive framework for evaluating line chart smoothing methods under a variety of visual analytics tasks. Line charts are commonly used to visualize a series of data samples. When the number of samples is large, or the data are noisy, smoothing can be applied to make the signal more apparent. However, there are a wide variety of smoothing techniques available, and the effectiveness of each depends upon both nature of the data and the visual analytics task at hand. To date, the visualization community lacks a summary work for analyzing and classifying the various smoothing methods available. In this paper, we establish a framework, based on 8 measures of the line smoothing effectiveness tied to 8 low-level visual analytics tasks. We then analyze 12 methods coming from 4 commonly used classes of line chart smoothing---rank filters, convolutional filters, frequency domain filters, and subsampling. The results show that while no method is ideal for all situations, certain methods, such as Gaussian filters and Topology-based subsampling, perform well in general. Other methods, such as low-pass cutoff filters and Douglas-Peucker subsampling, perform well for specific visual analytics tasks. Almost as importantly, our framework demonstrates that several methods, including the commonly used uniform subsampling, produce low-quality results, and should, therefore, be avoided, if possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源