论文标题

考虑结构数据信息的添加剂张量分解

Additive Tensor Decomposition Considering Structural Data Information

论文作者

Mou, Shancong, Wang, Andi, Zhang, Chuck, Shi, Jianjun

论文摘要

带有丰富结构信息的张量数据在过程建模,监测和诊断中变得越来越重要。在这里,结构信息指的是结构性特性,例如稀疏性,平滑度,低秩和分段恒定性。为了揭示张量数据中有用的信息,我们建议将张量分解为基于它们的不同结构信息的多个组件的总和。在本文中,我们在张量数据中提供了结构信息的新定义。基于它,我们提出了一个添加张量分解(ATD)框架,以从张量数据中提取有用的信息。该框架指定了一个高维优化问题,以获取具有不同结构信息的组件。提出了一种交替的乘数方法(ADMM)算法来求解它,这是高度平行的,因此适合提出的优化问题。两个模拟示例和医学图像分析中的一个真实案例研究说明了ATD框架的多功能性和有效性。

Tensor data with rich structural information becomes increasingly important in process modeling, monitoring, and diagnosis. Here structural information is referred to structural properties such as sparsity, smoothness, low-rank, and piecewise constancy. To reveal useful information from tensor data, we propose to decompose the tensor into the summation of multiple components based on different structural information of them. In this paper, we provide a new definition of structural information in tensor data. Based on it, we propose an additive tensor decomposition (ATD) framework to extract useful information from tensor data. This framework specifies a high dimensional optimization problem to obtain the components with distinct structural information. An alternating direction method of multipliers (ADMM) algorithm is proposed to solve it, which is highly parallelable and thus suitable for the proposed optimization problem. Two simulation examples and a real case study in medical image analysis illustrate the versatility and effectiveness of the ATD framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源